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Transport through porous media is encountered in several engineering and biological applications. The porous
media can be subjected to changes in structure owing to deposition, erosion, swelling or shrinkage which, in
turn, affects the transport properties of the media. A dynamic fractal model (DFM) is developed to describe the
evolution in pore structure undergoing deposition using fractal dimensions and to predict the changes in the ef-
fective diffusivity in terms of the dynamic fractal dimensions. Evolving microstructures undergoing deposition
are analyzed at various saturation levels to determine the effective diffusivity using the dynamic fractal model.
The effective diffusivity values of the evolving porous media are compared against existing data in the literature.
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1. Introduction

The structure of porous media commonly undergoes changes over
time as part of several physical processes such as flow in fuel cell layers,
transport in batteries, fouling of membranes during filtration, percola-
tion of minerals through rocks, contaminant transport and carbon-
dioxide storage as seen in oil and gas industry, flow in biological tissue,
and chemical vapor infiltration. Describing transport properties such as
permeability, diffusivity and conductivity in these dynamically evolving
porous media is critical to fundamental understanding, design and opti-
mization of such systems and forms the focus of the proposed study.

Several experimental studies in the past have focused on measure-
ment of transport properties in porous media by quantifying pressure
drop, species concentration and flow. Recent literature has seen in-
crease in numerical work involving reconstruction of porous media
combined with pore scale modeling to predict transport properties
[1-7]. Owing to their disordered nature, pore structures can be well de-
scribed by fractal dimensions that, in turn, are used to predict transport
properties such as permeability, conductivity and diffusivity [8-14]. Al-
though the properties of porous media have been explored extensively,
the study of changes in pore structure and, in turn, the corresponding
properties owing to deposition, erosion swelling or shrinking remains
a relatively unexplored area.

Previous theoretical and experimental studies have mainly focused
on determining the properties for pore structures at the beginning of de-
position or erosion, followed by use of analytical models or experimental
correlations to describe changes in transport properties with deposition.
The few studies relating to permeability reduction have used pore scale
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analysis of reconstructed pore structure to characterize the transport
properties. Chen et al. [6] used X-ray computed microtomography
(XCMT) to construct three-dimensional (3D) geometry of the pore struc-
ture before and after colloid deposition, followed by Lattice Boltzmann
(LB) simulations to evaluate change in local permeability and tortuosity.
It was found that the change in permeability followed a power law var-
iation with respect to porosity and the results significantly differed from
the predictions using Kozeny-Carman relationship. Similar studies in-
volving XCMT and LB modeling were performed by Okabe et al. [7].

The most common practice is to use the Bruggeman equation [15]
that relates the effective transport properties to the porosity of the me-
dium and a constant term denoting the tortuosity. A limitation of this
description is that any two geometries (pore structure) with same po-
rosity would exhibit similar behavior irrespective of their morphology,
which is inaccurate. In the absence of a comprehensive and accurate
theoretical model, researchers use experimental data to obtain a corre-
lation between tortuosity and porosity for different pore structures. The
resulting models are, therefore, correlatory and not predictive. In the
case of dynamic changes in pore structures, the number of experiments
increases exponentially for a comprehensive description and, in some
cases, the measurements require sophisticated tools and extensive ef-
fort to effectively determine the changes in pore structure. Moreover,
the use of oversimplified models that are inaccurate, or the reliance on
empirical expressions that involve tuning factors or post-facto correla-
tions of experiments do not offer a truly predictive approach to describ-
ing evolving porous media and their properties.

In this communication, we address the challenge of predicting the
evolution of pore structure as a function of deposition, saturation or ero-
sion using a fractal model. A model to predict the changes in fractal di-
mensions for a pore structure undergoing deposition is developed and
compared with the predictions obtained from image analysis. The
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variation in effective diffusivity is predicted with the dynamic fractal
model and compared with analytical solutions from other studies.

2. Fractal model

Fig. 1 shows the microstructural image of a disordered porous medi-
um [12], where the black regions represent the pores and the white
areas denote the solid matrix formed by the agglomeration of copper
particles. Owing to the randomness and presence of multiple length
scales, common to a wide range of porous media encountered in practi-
cal applications, the porous medium in Fig. 1 can be represented by frac-
tal dimensions [1-10,14]. In a fractal representation, the pore
architecture is usually quantified in terms of fractal dimensions dr and
dy, corresponding to the tortuosity and area dimensions, respectively.
The porous medium in this description can be envisioned to be a distri-
bution of tortuous capillaries of various sizes, with the effective length,
L., of a capillary of size \ given by [8-13]:

Le(\) = N4 (1)

where Ly is a representative length and dr is the tortuosity fractal di-
mension, such that a value of dr = 1 corresponds to a straight capillary
and dr = 2 corresponds to a highly tortuous medium. For a complete de-
scription of the pore structure, it is essential to also quantify the number
of capillary pathways corresponding to every pore size, \. The popula-
tion of the intersecting pores in a cross section exhibits the general
trend that N(L > \), which denotes the total number of pores of size ex-
ceeding or equal to a value N, increases as the pore size decreases.
Hence, the cumulative pore distribution in a cross section can be repre-
sented by [8-13]: The theory of fractal dimensions and representation
of porous media using these dimensions is well established and is not
discussed in detail here. Readers are referred to Refs. [8-14] for a
more detailed explanation.

N(L2\)= (ATY )

The area and tortuosity dimensions can be obtained from a box-
counting analysis [9,10] of the area and the perimeter of the pores, re-
spectively, in a microstructural image of the porous structure. The re-
sults of box-counting analysis of the microstructure in Fig. 1 are
presented in Fig. 2, where Fig. 2(a) describes the log-log variation of
the cumulative pore distribution as a function of pore size. The negative
of slope of a linear fit through the data gives the area fractal dimension,

Fig. 1. Microstructure image of a disordered porous media [12].
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Fig. 2. Box-counting analysis for (a) area flow dimension, dy and (b) tortuosity dimension,
dr.

dy (=1.76 for Fig. 1), which is representative of the cumulative pore
distribution as given by Eq. (2). The value calculated by Yu and Cheng
[12] for the above geometry was 1.79 considering a bi-dispersed porous
media, which is very close to the value obtained here, while treating the
media as mono-dispersed. Similarly, by using the box-counting method
on the perimeter of the pores [9,10], the tortuosity dimension, d, can be
obtained from the slope of a linear fit through data on a log-log plot to
be dr (=1.18 for Fig. 1), as seen in Fig. 2(b).

3. Deposition in porous media

Based on the fractal description discussed above, the changes in pore
structure as a function of saturation or deposition is modeled. Deposi-
tion (or saturation) is simulated in porous media by numerically dilat-
ing [16] the solid boundaries in the pore structure image to mimic a
physical deposition in pores. Fig. 3 shows the pore structure images
with different saturation values, where saturation is defined
as,s=1— &"/¢°, with & and £'¢" as the porosity of the medium be-
fore and after deposition, respectively. The porosity and saturation
values for Fig. 3(a), (b), (c) are s = 0, 0.116, 0.208 and ¢ = 0.575,
0.508, 0.456, respectively. The methodology to quantify changes in frac-
tal dimensions with changes in saturation levels is discussed next.

3.1. Evaluating changes in dy

According to Yu and Cheng [12], the area fractal dimension, dy, can
be expressed as:

Ine
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