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A B S T R A C T

A defect-correction finite element (FE) method is designed and analyzed for solving the two-dimensional
(2D) transient conduction-convection problem at high Reynolds number. The method combines the merits
of Crank-Nicolson (CN) extrapolation discretization and defect-correction scheme, which consists of solving
a linearized problem with an added artificial viscosity term and then correcting the previous numerical
solutions by a linearized defect-correction technique. The stability and optimal error estimate of the fully
discrete scheme are derived. Finally, performance of the proposed method is investigated by numerical
experiments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The incompressible nonstationary conduction–convection
problem is one of the main system studied in fluid dynamics,
which is the coupled nonlinear dynamic system of viscous incom-
pressible flow and temperature field. For the thermodynamics
view, the moving course of viscous fluid will produce quantity
of heat. Thus, the fluid motion must be companied with mutual
transformation of temperature, velocity and pressure for the incom-
pressible conduction–convection problem. Therefore, research of
the considered model is a subject that is full of significance. And
there are numerous works devoted to the development of high
efficient and promising schemes for the conduction–convection
equations [1–10].
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Turbulent flows are characterized by high Reynolds numbers,
which occur in many processes in nature as well as in many indus-
trial applications. But high Reynolds number may exhibit global
spurious oscillations by the standard Galerkin FE method to solve
the considered model for the dominance of the convection term.
Then, there are many efficient numerical techniques devoted to
cutting through the difficulty: the variational multiscale method
in [11–14], the stabilization scheme in [15], the defect-correction
method in [7,16], etc. Among them, the defect-correction is one
of the popular method to deal with the problem at high Reynolds
number. The main idea of the defect-correction method is to solve
stabilized artificial viscosity nonlinear equations in the defect step
and correct the residual by a linearized problem in the correction
step for a few steps.

As a consequence, the defect-correction scheme gains extensive
attentions. Layton et al. initially proposed the defect-correction
method for the stationary incompressible Navier–Stokes equations
with high Reynolds number in [17]. Then, Axelsson and Layton [18]
applied the defect-correction method for the convection–diffusion
problems. Recently, Kaya et al. [19] considered the synthesis of a
subgrid stabilization method with defect-correction method for the
stationary natural convection problem. Besides, a two-level defect-
correction Oseen iterative stabilized FE methods for the station-
ary conduction–convection equations is given by Su et al. in [7].
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Furthermore, a defect-correction method for unsteady conduction–
convection problems is proposed in [20] and Zhang et al. [21]
investigated a defect-correction mixed FE method for steady-state
natural convection problem.

In a practical application, fully implicit schemes are (almost)
unconditionally stable for the nonstationary problem. However, one
has to solve a system of nonlinear equations at each time step.
Besides, it suffers a restriction of time step size from the stability
requirement for the explicit scheme. Then, a popular approach is
based on an implicit scheme for the linear term and a semi-implicit
scheme or an explicit scheme for the nonlinear term. In [22], Davis
et al. proposed a first-order semi-implicit scheme which using one
or two steps to handle the nonlinear term in computations for the
transient Navier–Stokes equations and eddy viscosity models. Obvi-
ously, high-order schemes are of more interest for the first-order
schemes are not efficiently accurate for large time approximations.
And CN extrapolation scheme is one of the popular stable linearized
scheme with second-order accuracy. Because of its high accuracy and
unconditional stability, the scheme has been widely used in many
partial differential equations [23–25].

The remainder of this paper is organized as follows. In Section 2,
we introduce the notations, an abstract functional setting of the
transient conduction–convection problem. Mixed FE strategy and
some well-known results used throughout this paper are recalled in
Section 3. Defect-correction FE method based on the CN extrapola-
tion scheme and its uniform stability, optimal error estimates are
presented in Section 4. Then in Section 5, numerical experiments are
shown to verify the theoretical results completely. Finally, we end
with a short conclusion in Section 6.

2. Preliminaries

Let Y be a bounded, convex and open subset of R
2 with a

Lipschitz continuous boundary ∂Y. We consider the nonstationary
conduction–convection equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut − mDu + (u • ∇)u + ∇p = kjT, in Y × (0, t∗],

∇ • u = 0, in Y × (0, t∗],

Tt − DT + ku • ∇T = 0, in Y × (0, t∗],

u(x, 0) = 0, T(x, 0) = n(x), on Y × {0},
u = 0, T = c(x, t) in ∂Y × (0, t∗],

(1)

where u = (u1(x, t), u2(x, t)) represents the velocity vector, p = p(x, t)
the pressure, T = T(x, t) the temperature, m> 0 the viscosity, which
is inversely proportional to the Reynolds number, k> 0 the Grashoff
number, n(x) and c(x, t) are the given function, j = (0, 1)

′
the 2D

vector, t∗ the given final time and ut = ∂u/∂t, Tt = ∂T/∂t.
The standard weak form of the incompressible conduction–

convection system Eq. (1) reads: find (u, p, T) ∈ (X, M, W) for all t ∈
(0, t∗] such that for all (v, q, s) ∈ (X, M, W0) and T|∂Y = c(x, t),

⎧⎪⎪⎨
⎪⎪⎩

(ut , v) + B((u, p); (v, q)) + b(u; u, v) = k( jT, v),

(Tt , s) + a(T, s) + kb(u; T, s) = 0,

u(x, 0) = 0, T(x, 0) = n(x),

(2)

with

a(u, v) = (∇u, ∇v), d(v, q) = (q, divv), a(T, s) = (∇T, ∇s),

b(u; v, w) = ((u • ∇)v, w) +
1
2

((divu)w, v) =
1
2

((u • ∇)v, w) − 1
2

((u • ∇)w, v),

b(u; T, s) = ((u • ∇)T, s) +
1
2

((divu)T, s) =
1
2

((u • ∇)T, s) − 1
2

((u • ∇)s, T),

B((u, p); (v, q)) = ma(u, v) − d(v, p) + d(u, q),

and

X :=
(

H1
0(Y)

)2
, W := H1(Y), W0 := H1

0(Y),

M := L2
0(Y) =

{
q ∈ L2(Y) :

∫
Y

qdx = 0
}
.

The spaces L2(Y)s, s = 1, 2, are equipped with the L2-scalar
product ( • , • ) and L2-norm ‖ • ‖0. The space X is endowed with the
usual scalar product (∇u, ∇v) and the norm ‖∇u ‖0. Standard defini-
tions are used for the Sobolev spaces Wm,p(Y), with the norm ‖ • ‖m,p,
m, p ≥ 0. We will write Hm(Y) for Wm,2(Y) and ‖ • ‖m for ‖ • ‖m,2. Also,
we denote by ‖ • ‖Lq the norm on space Lq(Y) with 1 < q ≤ ∞.

And the trilinear forms b( • ; • , • ) and b̄( • ; • , • ) satisfy

|b(u; v, w)| ≤ N ‖∇u‖0 ‖∇v‖0 ‖∇w‖0, ∀u, v, w ∈ X, (3)

|b(u; T, s)| ≤ N ‖∇u‖0 ‖∇T‖0 ‖∇s‖0, ∀(u, T, s) ∈ (X, W , W),

where

N = sup
u,v,w∈X

|b(u; v, w)|
‖∇u‖0 ‖∇v‖0 ‖∇w‖0

, N = sup
u∈X,T,s∈W

|b(u; T, s)|
‖∇u‖0 ‖∇T‖0 ‖∇s‖0

.

3. Mixed finite element method

For h > 0, we consider finite-dimensional subspaces
(Xh, Mh, Wh) ⊂ (X, M, W) which are characterized by Kh, a partitioning
of Y into triangles K with the mesh size h, assumed to be uniformly
regular in the usual sense. And define W0h = Wh ∩ W0. For further
details, readers can refer to Ciarlet [26]. Subsequently, c or C (with or
without a subscript) will denotes a generic positive constant.

The standard FE Galerkin approximation of Eq. (2) based on
(Xh, Mh, Wh) reads as follows: find (uh, ph, Th) ∈ (Xh, Mh, Wh) such that,
for all 0 ≤ t ≤ t∗, Th|∂Y = T∗ (t∗ is the interpolation of c(x, t)) and
(vh, qh, sh) ∈ (Xh, Mh, W0h),

⎧⎪⎪⎨
⎪⎪⎩

(uht , vh) + B((uh, ph); (vh, qh)) + b(uh; uh, vh) = k( jTh, vh),

(Tht , sh) + a(Th, sh) + kb(uh; Th, sh) = 0,

uh(x, 0) = 0, Th(x, 0) = T0
h ,

(4)

where T0
h is the interpolation of n(x).

Then, we define the subspace Vh of Xh given by

Vh = {vh ∈ Xh : d(vh, qh) = 0, ∀qh ∈ Mh}.

According to [27], the FE space pair (Xh, Mh) and Vh satisfy the
following properties:

Lemma 3.1. Let Ih : L2(Y)2 → Vh be the standard L2-projection. Then

‖v − Ihv‖0,Y + h ‖∇(v − Ihv)‖0,Y ≤ chi ‖v‖i,Y, ∀v ∈ Hi(Y) ∩ V0, (5)

for i = 1, 2, 3, with V0 = {v ∈ H1
0(Y); ∇ • v = 0} .

Purely for some subspace analysis, we shall often make use of the
approximate divergence-free FE space V0h:

V0h = {vh ∈ Vh; (divvh, qh) = 0, ∀qh ∈ Mh}.



Download English Version:

https://daneshyari.com/en/article/4992998

Download Persian Version:

https://daneshyari.com/article/4992998

Daneshyari.com

https://daneshyari.com/en/article/4992998
https://daneshyari.com/article/4992998
https://daneshyari.com

