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Available online xxxx Numerical simulations for laminar double-diffusive free convection in a porous square cavity using the Thermal
Non-EquilibriumModelwere presented. Vertical surfacesweremaintained at constant temperature and concen-
tration whereas horizontal walls were kept insulated. The cavity was filled with a rigid and isotropic porous ma-
trix, which was saturated with an incompressible fluid. Transport equations were discretized by means of the
control volume method leading to a coupled algebraic equation set that was solved via the SIMPLE method. Re-
sults pointed that bothNuw and Shw are dependent on porosity ϕ and on the thermal conductivity ratio ks/kf.Nuw
decreases as ϕ decreases or ks/kf increases due to enhancement of conduction transport across the cavity. On the
other hand, Shw and wall mass flux increases as porosity decreases or ks/kf increases. Such dependence of Shw
arises from the intensification of recirculating motion in the cavity as ϕ is reduced or ks/kf is of a higher value,
which affects heat exchange between phases and, consequently, wall mass fluxes. Finally, this study shows
that both average Nusselt and Sherwood numbers diverge from published correlation when ks/kfN1 for same
Da value.
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1. Introduction

Processes involving coupled heat andmass transfer are found in var-
ious branches of science and engineering. When occurring within po-
rous substrates, research on such double-diffusive systems have wide
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applications spanning from environmental flows to biomedical
research.

Motivated by the foregoing, many studies have been published on
laminar flow in porous media. The monographs of Nield and Bejan
(1992) [1] and Ingham and Pop (1998) [2] fully documented the prob-
lemof laminar flow in porousmedium. Theworks ofWalker andHomsy
(1978) [3], Bejan (1978) [4], Prasad andKulacki (1984) [5], Beckermann
et al. (1986) [6], Gross et al. (1986) [7], Manole and Lage (1992) [8] and
Moya et al. (1987) [9] have contributed with important results to the
problem of natural convection in a porous rectangular cavity.

When mass transfer is also considered, Trevisan and Bejan (1985)
[10,11], Goyeau et al. (1996) [12], Mamou et al. (1995) [13] and
Mamou et al. (1998) [14] investigated double-diffusive convection in a
vertical cavity subjected to horizontal gradients of temperature and
concentration. In all aforementioned works, the intra-pore flowwas as-
sumed to be laminar and they demonstrated that depending on the pa-
rameters employed and on the thermal to solute buoyancy ratio, several
convection modes prevail. Bennacer et al. (2001) [15] studied the im-
pacts of permeability and Lewis number on average Nusselt and Sher-
wood Numbers and pointed three distinct regimes depending of the
permeability ratio of anisotropic porous media.

If fluctuations in time are also of concern due the existence of turbu-
lence in the intra-pore space, a variety of mathematical models have
been published in the literature in the last decade. One of such views,
which entails simultaneous application of both time and volume aver-
aging operators to all governing equations, has been published in a
book [16] that describes, in detail, an idea known in the literature as
the double-decomposition concept.

Further in the literature, the use of the two-energy equation model
has also been considered for passive heat transfer across differentially
heated cavities [17]. Recently, Carvalho and de Lemos (2014a) [18]
used the two-energy equationmodel for analyzing laminar flows in cav-
ities. Therein, only laminar regime was investigated. Following a sys-
tematic study on thermal non-equilibrium model in porous cavities,
an extension of the work in [18] was presented for turbulent flow by
Carvalho and de Lemos (2014b) [19].

Earlier, de Lemos and Tofaneli (2004) [20] presented amathematical
model for turbulent double-diffusive natural convection in porous en-
closures and discussed the stability of mixtures under temperature
and concentration gradients. Later, Tofaneli and de Lemos (2009) [21]
studied the effects of opposing and aiding drives on double-diffusive
convection, using laminar as well as k-ε high Reynolds turbulence
models. They found that, for both models, aiding drives presents higher
values for Nusselt and Sherwood parameters. However, thework in [21]
was limited to one single porosity and one unique thermal conductivity
ratio for the solid and fluid phases.

Therefore, this contribution combines two distinct models that have
been developed on separate, namely the two-energy equation model
for natural convection [18,19] and the double-diffusion model [20,21],
both independently applied to porous enclosures. Here, these model
are worked together and, by that, a larger number of practical engineer-
ing applications can be analyzed, broaden, as such, the numerical tool
earlier developed [16]. Here, only laminar flows are considered.

2. Governing equations

Themathematicalmodel here employed is based on thework of Ref-
erence [22], which includes the assumption of Local Thermal Non-Equi-
librium (LTNE) or Two-Energy Equation Model for heat transfer
calculations [18,19]. One should emphasize that in [22] nonumerical re-
sults were reported. As most of the theoretical development of equa-
tions is readily available in the open literature, the governing
equations will be just presented. For details about their derivations
and formulations, the interested reader is referred to the above-men-
tioned papers. Essentially, local instantaneous equations are volume-

Nomenclature

Latin characters
cF Forchheimer coefficient
cp Specific heat
d Pore diameter
D D=[∇u+(∇u)T]/2, Deformation rate tensor
Da Darcy number, Da ¼ K

H2

D Mass diffusion coefficient
Dp Particle diameter
g Gravity acceleration vector
h Heat transfer coefficient
hc Mass transfer coefficient
H Square height
I Unit tensor
Jy Mass flux of species ℓ along hot wall
K Permeability, K ¼ D2

pϕ
3

144ð1−ϕÞ2
kf Fluid thermal conductivity
ks Solid thermal conductivity
Kdisp Conductivity tensor due to the dispersion
Ktor Conductivity tensor due to the tortuosity
L Cavity width
Le Lewis Number, Le ¼ α f

D ¼ Sc
Pr

ni Unit vector normal to the Ai
Nu Nusselt number, Nu ¼ hL

�
keff

Nuw Average Nusselt number at hot wall
Pr Prandtl number
qw
f Wall heat flux through the fluid phase

qw
s Wall heat flux through the solid phase

Raf Fluid Rayleigh number, Raf ¼ gβH3ΔT
v f α f

Ram Darcy-Rayleigh number, Ram ¼ Raf � Da ¼ gβϕHΔTK
ν f αeff

ReD Reynolds number based on the particle diameter, ReD ¼
juD jDp

ν f
.

Sc Schmidt number, Sc ¼ ν
D

T Temperature
u Microscopic velocity
uD Darcy or superficial velocity (volume average of u)
u,v Velocity components
U,V Non-dimensional velocity components
Vo Reference buoyancy velocity

Greek characters
αf Fluid hermal diffusivity
β Thermal expansion coefficient
ΔV Representative elementary volume
ΔVf Fluid volume inside ΔV
μ Dynamic viscosity
ν Kinematic viscosity
ρ Density
ϕ Porosity, ϕ ¼ ΔV f

�
ΔV

Special characters
φ General scalar variable
〈φ〉i Intrinsic average
〈φ〉v Volume average
iφ Spatial deviation
|φ | Absolute value (Abs)φ General vector variable
φeff Effective value, φeff=ϕφf+(1−ϕ)φs

φs,f solid/fluid
φH,C Hot/cold
φϕ Macroscopic value
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