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1314151617 18The study of swirling flows and heat transfer near various rotating machines, such as fans, turbines and centrif-
19ugal pumps, is necessary and important for many manufacturing processes in industry, especially the cooling of
20turbojet engines. The flow and heat transfer of power-law fluids over an infinite rotating disk is investigated in
21this paper. A generalized Fourier heat transfer model is introduced inwhich the thermal conductivity is assumed
22to depend on temperature gradient. New similarity variables are defined and the governing equations in the
23boundary layer are reduced to a set of coupling ordinary differential equations. An improved multi-shooting
24method is proposed to solve the resulting singular boundary value problems. The effects of the power-law
25index and local Prandtl number Q2on velocity, pressure and temperature fields are analyzed. Especially, the viscos-
26ity coefficient and heat conductivity are discussed.
27© 2016 Elsevier Ltd. All rights reserved.
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38 1. Introduction

39 Flows and heat transfer due to rotating disks are important in theory
40 and inmanypractical engineering applications, such as the design of the
41 gas turbine rotors and electronic devices with rotary parts. Steady
42 laminar flows of viscous Newtonian fluid over an infinite rotating disk
43 were studied originally by von Karman [1], who proposed an elegant
44 similarity transformation which reduces the Navier-Stokes equations
45 to ordinary differential equations, which were then solved by the mo-
46 mentum integral method. Cochran [2] gave a more accurate asymptotic
47 series solution to Karman's viscous pumping flow. Karman swirlingflow
48 has received considerable attention over the years [3]. The heat transfer
49 of Karman swirlingflowwas considered byMillsaps and Pohlhausen [4]
50 and Sparrow andGregg [5]. Dorfman [6] considered a thermal boundary
51 condition of power-law distribution for the wall temperature for a free
52 rotating disk. Shevchuk [7] gave a new analytical solution with Nusselt
53 number being specified as a boundary condition in the form of an
54 arbitrary power-law function, and the results were compared with ex-
55 perimental data. Hayat et al. [8] and Frusteri andOsalusi [9] investigated
56 three-dimensional flows in which thermal conductivity depends on
57 temperature. More investigations on the swirling flow and heat transfer
58 with the aid of Karman's similarity transformation have been reported
59 [10–15]. Another extension of Karman swirling flow is to a case in
60 which the spinning disk is rotating in a non-Newtonian rather than

61Newtonian fluid. Many fluids are non-Newtonian, for which a linear
62relationship between the stress tensor and the deformation tensor is
63not satisfied, such as blood, petroleum, slurry, emulsion, pulp, etc. A
64detailed discussion up to 1991 on flows of non-Newtonian fluids due
65to rotating disks can be found in the review paper by Rajagopal [16].
66Ariel presented a research on rotating flows of elastic-viscous Oldroyd
67B fluid [17] and second-grade fluid [18]; perturbation solutions for
68small non-Newtonian fluid parameter and asymptotic analytical solu-
69tions for large parameter were obtained. Siddiqui et al. [19] studied
70the heat transfer on themagnetohydrodynamic (MHD) flow of Burgers'
71fluid between two disks, and the effects of Hartmann number, Prandtl
72number, Eckert number and Hall parameter were analyzed. Sahoo
73et al. researched the flow of Reiner-Rivlin fluid over a rotating disk
74with heat transfer [20] and the effects of the non-Newtonian fluid
75characteristics on the velocity and temperature distributions as well as
76the heat transfer were considered [21]. The swirling flow and heat
77transfer of Bingham fluid were investigated by Rashaida et al. [22].
78Osalusi et al. [23] examined the effects of viscous dissipation and Joule
79heating on steady MHD flow of a Bingham fluid over a porous rotating
80disk in the presence of Hall and ion-slip currents. Attia studied the un-
81steady flow and heat transfer of Reiner-Rivlin fluid over a rotating disk
82by finite difference method [24] and investigated the effect of suction
83on the flow and heat transfer [25]. Sheikholeslami et al. [26–31]
84researched the flow and heat transfer of magnetic nanofluid in various
85situations. In order to deal with the three-dimensional swirling flow
86over a rotating disk for power-law fluid, Mitschka [32] proposed gener-
87alized Karman similarity transformations. Andersson and Korte [33]
88reviewed Mitschka's work and obtained velocity distributions for
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89 different power-law indices in the range 0.5≤n≤2 by a finite difference
90 method, and extended the work to MHD flow [34]. Denier and Hewitt
91 [35] considered the pressure correction and pointed out that there is a
92 critical singular position for shear-thickening fluid. Griffiths [36]
93 analyzed the stability of the rotating flow for shear-thinning fluid by a
94 linear stability analysis.
95 As far as the heat transfer of power-law fluid over a rotating disk is
96 concerned, little work has been done because no suitable similarity so-
97 lution has been found for the energy equation. In a previous work [37],
98 we obtained the similarity solutions for the flow and thermal boundary
99 layer equations of power-law fluids over a rotating disk under the
100 assumption that the thermal conductivity of non-Newtonian fluids
101 depends on the velocity gradient. This assumption was proposed in
102 Pop et al. [38,39]. In the present work, the pressure and heat transfer
103 of power-law fluids over a rotating disk are investigated under the
104 assumption that the thermal conductivity depends on the temperature
105 gradient. This assumption is motivated by the assertion that surface
106 tension is a function of temperature, and the effects of powerQ3 -law
107 fluid viscosity on the temperature field can be taken into account by
108 assuming that the temperature field behaves in a similar way to the
109 velocity field. In this setting, Zheng et al. [45] studied flow and heat

110transfer of Marangoni convection of a power-law non-Newtonian fluid
111due to power-law temperature gradients. A significant outcome of the
112work in [45] was that the temperature and the thermal boundary
113layer decrease as the power-law number and the Marangoni number
114increase for non-Newtonian fluids. We will explore Zheng's model
115[45] further in this paper to study swirling flow and heat transfer of
116power-law fluids over an infinite rotating disk.
117This paper is organized as follows. First the governing equations are
118formulated in Section 2. The similarity transformation is given, and the
119governing equations including the energy equation in the boundary
120layer are recast as a set of ordinary differential equations in Section 3.
121The resulting system of highly nonlinear differential equations for the
122velocity, pressure and temperature field is solved by an improved
123multi-shooting method, and numerical results are shown in Section 4.
124Finally some conclusions are drawn in Section 5.

1252. Governing equations

126We consider a steady laminar flowdriven by an infinite disk rotating
127with constant angular velocity Ω about the z-axis. The cylindrical
128coordinate is (r,φ,z), and (u,v,w) are the velocity components along the
129(r,φ,z) directions, respectively. The fluid is thrown out and the upper
130fluid falls down when the disk is rotating. Heat transfer is considered.
131Let T be the temperature of the fluid. The motion and heat transfer of
132the incompressible fluid above the disk is governed by the conservation
133equations for mass, momentum and energy:
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147147where μ is the dynamic viscosity, p is the fluid pressure, ρ is the fluid
density, cp is the specific heat at constant pressure of the fluid, k is the

148thermal conductivity.
149The ambientfluid far away from the disk is assumed to be at rest. The
150temperature maintains at constant Tw on the disk surface and keeps a
151uniform temperature T∞ out of the boundary layer. pw is the pressure
152on the disk surface. The associated boundary conditions are

u ¼ 0; v ¼ Ωr;w ¼ 0;p ¼ pw; T ¼ Tw at z ¼ 0 ð6Þ 154154

155
u ¼ 0; v ¼ 0; T ¼ T∞ as z →∞ ð7Þ

157157

The fluid obeys the Ostwald-de Waele power-law model in which
158the viscosity can be expressed as
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160160where K is the consistency coefficient of the fluid andn is the power-law
index with 0b nb 1, n=1 and n N1 representing shear-thinning

161(pseudoplastic) fluid, Newtonian fluid and shear-thickening (dilatant)
162fluid, respectively.

T1:1 Nomenclature

T1:2 Roman symbols
T1:3 cp specific heat at constant pressure (J/(kg·K)
T1:4 F self-similar radial velocity
T1:5 G self-similar tangential velocity
T1:6 H self-similar axial velocity
T1:7 K consistency coefficient of the fluid
T1:8 n power law index
T1:9 p pressure (N/m2)
T1:10 Pr Prandtl number
T1:11 Q self-similar pressure function
T1:12 r radial coordinate (m)
T1:13 R characteristic length (m)
T1:14 Re Reynolds number
T1:15 T temperature in the flow region (K)
T1:16 U reference velocity (m/s)
T1:17 u radial velocity component (m/s)
T1:18 v tangential velocity component (m/s)
T1:19 w axial velocity component (m/s)
T1:20 z normal coordinate (m)
T1:21 r; z;u; v;w; p; T dimensionless functionT1:22

T1:23 Greek symbols
T1:24 α radial velocity gradient on the disk
T1:25 β tangential velocity gradient on the disk
T1:26 φ angular coordinate (Rad)
T1:27 γ axial velocity gradient on the disk
T1:28 κ thermal conductivity (W/(m·K))
T1:29 λ heat coefficient
T1:30 μ coefficient of viscosity (Pa·s)
T1:31 ρ density (kg/m3)
T1:32 σ thermal gradient on the disk
T1:33 τ wall shear stress (N/m2)
T1:34 ξ dimensionless normal distance
T1:35 Θ dimensionless temperature function
T1:36 Ω angular speed of the disk (Rad/s)T1:37

T1:38 Subscripts
T1:39 w wall (z = 0)
T1:40 ∞ infinityT1:41
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