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14The ability to deal with the complex geometries precisely and accurately has always been the most integral part
15of any computational fluid dynamics approach. The lattice Boltzmannmethod has already achieved considerable
16success in the simulation of unsteady flow with arbitrary boundary shapes. To include boundaries in the lattice
17Boltzmann simulations, severalmethods have been presented in the past to satisfy the standard boundary imple-
18mentation of macroscopic flows. In spite of the considerably vast body of literatures that discuss in this field, the
19study still is in progress. The current study is an overview of the adopted boundary conditions in lattice
20Boltzmann method.
21© 2016 Elsevier Ltd. All rights reserved.
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34 1. Introduction

35 The lattice Boltzmann method (LBM) is an innovative technique of
36 computational fluid dynamics based on the Boltzmann transport equa-
37 tion,which is supported by the advanced kinetic theory [1–7]. In the last
38 few decades, LBM has changed into a successful alternative method for
39 simulating complex physical, chemical, and fluid mechanics problems
40 [8,9]. The LBM utilizes the ensemble-averaged distribution functions
41 to explain the system by this assumption that the collective behavior
42 of the fictitious particles which, comprised of the system, is consistent
43 with the principles of the macroscopic physics. An interesting aspect
44 of the LBM is its ability to process the complicated boundary geometries
45 easily with acceptable accuracy [10]; hence, investigating the suitable
46 boundary conditions' treatment for LB simulations has become a highly
47 researched area in many engineering and scientific applications
48 [11–16]. The computational efficiency of LBM in comparison with the
49 traditional CFDmethods establishes it as a potent applicant. The quanti-
50 tative behavior of LBM was investigated in comparison with FVM in
51 many research studies [17–20]. The results show that, concerning
52 complex geometries, the lattice Boltzmann method showed more
53 efficiency than the well accepted finite volume approach. The CPU
54 times with increasing complexity of the obstacle structure was
55 increased for both method and for highly complex structures became
56 almost independent from it for LBM. Furthermore, based on review by
57 Chen and Doolen [21] the approximated computational cost for moving
58 solid particle simulation, in suspension simulation, in LBM had been

59convenient and efficient. The work for simulation of N particles in
60LBM moving boundary method scales linearly with N while in finite
61element method this scale is N2 [22]. A method with the capability of
62accurate inter-phase calculation and simple boundary condition imple-
63mentation can be a very good option for replacing the current methods
64of complex flow simulation. Adding to these advantages, parallel scal-
65ability has made it exceptional to many other numerical approaches.
66In this paper, we are willing to review the different boundary condition
67developing trend in the frame of LBM. In the next section lattice
68Boltzmann method will be briefly touched and on followings the most
69popular studies of LBM boundary conditions will be summarized and
70discussed based on the CFD standard categories.

712. Review of lattice Boltzmannmethod

72The LBM has its ancestry from the lattice gas automata (LGA), a
73kinetic model that was constructed in discrete space and time. The
74discretized velocity distribution function can be obtained by solving
75the Boltzmann equationwith different collisionmodels. The LGA is frus-
76trated by some unwanted issues. First, the density dependent factor in
77nonlinear advection term and a velocity dependent pressure that does
78not lead to the Galilean invariance system of lattice gases. Second, it is
79overwhelmed by noise. To overcome these undesirable problems LBM
80replaced the Boolean variable in LGA by a single particle distribution
81function [23]. This process eliminated the statistical noise in LGA and
82single particle distribution function fi was defined as an ensemble
83average of particle occupation variable ( fi=ni). The practical approach,
84interpreted in the LBM, consists of solving the Boltzmann equation for
85the evolution of a single distribution function f (x, v, t) of particles as
86theymove and collide on a lattice. The solution of the equation includes
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87 twomain steps; the stream step or advection term propagates informa-
88 tion through the lattice cells, while the collision step normalizes the
89 distribution functions to the equilibrium distribution function. The col-
90 lision operator represents the rate of change of the distribution function
91 due to the colliding process and depends only on the local equilibrium
92 state. The discrete Boltzmann equation with the BGK [24] collision
93 model for the particle velocity distribution function, fi (x, t) ignoring
94 the external force term can be expressed as:

f i xþ eiΔt; t þ Δtð Þ ¼ f i x; tð Þ þ 1
τ

f i x; tð Þ− f eqi x; tð Þ� �
; i ¼ 0;1;2;3;…:;Nð Þ

ð1Þ

9696 where τ is the relaxation time, Δt is the time step, ei( = Δx/Δt) is the
particle velocity in the i-direction. fi is the particle velocity distribution

97 along the ith direction, which represents the fraction of the particles
98 with velocities in the range of ei and ei+d ei. The number of discrete ve-
99 locity directions standing for the lattice is chosen based on certain sym-
100 metry requirements to recover the isotropy of the viscous stress tensor
101 of the fluid flow [25]. The zero index symbolizes the rest particle with
102 the zero velocity. The relaxation time is related to the kinematic viscos-
103 ity of the fluid via the relation:

τ ¼ 3ν þ 1
2
: ð2Þ

105105

The equilibrium distribution function which appears in the collision
106 operator is an expansion of the Maxwellian distribution function in an
107 equilibrium state for the low Mach number.

f eq x; tð Þ ¼ ρ

2πRTð Þd2
exp −

e−uð Þ• e−uð Þ
2RT

� �
ð3Þ

109109 where R ,T ,ρ and u are gas constant, temperature, macroscopic density
and macroscopic velocity respectively. d stands for space dimension.

110 The general structure of the equilibrium function can be written up
111 to O(u2) [26]:

f eqi ρ;uð Þ ¼ ρ aþ b ei:uð Þ þ c ei:uð Þ2−d u:uð Þ
h i

ð4Þ

113113 where a, b, c, and d are the lattice constants. ρ(=Σfi) is the fluid density,
u (ρu=Σfiei) is the fluid velocity. The coefficients of the above equation

114 can be obtained analytically [27] and results in:

f eqi ρ;uð Þ ¼ ρwi 1þ 1
c2s

ei:uð Þ þ 1
2c4s

ei:uð Þ2− 1
2c2s

u:uð Þ
� �

ð5Þ

116116 where cs is the speed of sound andw is theweighting factor in the lattice
fluid density. This equation is used for lattice nodes within the fluid do-

117 main and the boundary nodes need extra treatments due to insufficient
118 number of known distribution functions. In the simulations of LBM, the
119 distribution functions fi on the fluid nodes are known after each time
120 step of streaming, but some distribution functions on the boundary
121 nodes are unknown. Only if distribution functions on the boundary
122 nodes are determined, the next computation step can proceed. So, the
123 distribution functions on the boundary nodes need to be determined
124 based on the knownmacroscopic boundary conditions.When boundary
125 appears physical characteristics, including periodicity, symmetry, and
126 fully developed flow conditions, unknown distribution functions can
127 be simply determined by the motion pattern of particles.

128 3. Boundary condition in LBM

129 One of themost important and critical issues in the LBM is imposing
130 the proper boundary condition for flow simulation. Applying the
131 boundary condition in NS method is somehow straightforward, while
132 in LBM, because of the mesoscopic nature, it is not so clear and it

133needs translation from macroscopic to mesoscopic scale. Hence,
134remarkable efforts have been devoted to develop effective and precise
135boundary schemes for different situations. Depending on the flow
136structure and problem geometries, various types of boundary condition,
137including free slip, no-slip, periodic, sliding walls, movingwalls, in-flux,
138and out-flux boundaries might be applied to the evolution of the distri-
139bution functions. In the frame of LBM, different approaches have been
140presented for simulating BCs [28–32].

1413.1. Periodic boundary condition

142Through the aforementioned BCs the easiest one is the periodic
143boundary at the sides of the computational domain. In this case, the sys-
144tem is assumed to be isolated in a closed domain so the number of par-
145ticles remains constant due to conservation law. The periodic conditions
146are applied as a natural part of the streaming operation, so that outgoing
147particles at one end of the lattice become incoming particles at the other
148end. These make sure that mass is neither gained nor lost through the
149periodic boundaries. The concerns about positivity of the population
150are somewhat the key of numerical stability and the major drawback
151of the proposed methods is laid in that the distribution function is lost
152during the BC applying [33]. However, there is an agreement on the
153methods of treatment for this type of BC, but a more specified study in
154this field can be found in the literatures.
155In a reported study of Zhang and Kwok [34] the general periodic BC
156of the lattice Boltzmann method has been altered to include the pres-
157sure variance for fully developed periodic flows (Fig. 1 Q2). They stated
158that the proposed treatment does not generate nonphysical inlet or out-
159let disturbance and it is applicable for systemswith periodic electric and
160temperature fields. Later on, Kim et al. [35] proposed a new boundary
161closure for fully developed pressure driven flow, which is of higher ac-
162curacy than of Zhang et al. [34] and it is applicable for both compressible
163and incompressible flows. Subsequently, Gräser and Grimm [36] have
164combined the Kim and Pitsch method with a controller loop that
165adapted a perpendicular pressure gradient to restrain any net momen-
166tum, perpendicular to the outerwalls anddeveloped an algorithm for an
167adaptive BC for fully developed pressure driven flow simulation.

1683.2. Pressure and velocity boundary condition

169Successful fluid flow numerical simulations desire the proper
170velocity and pressure boundary conditions implementation. The gener-
171al velocity and pressure boundaries are still under further development
172for the lattice-Boltzmann method. In LBM, most previous researches
173concerned with pressure and the velocity boundary condition concen-
174trate somehow on the wall Dirichlet boundary condition based on the
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Fig. 1. The periodic boundary for left and right sides of a domain (D2Q9).
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