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Available online 24 August 2016 In this article, a characteristic-based dual-phase-lag numerical model based on finite differencemethod has been
developed to predict the microscopic heating response in time as well as consideration of the micro-structured
effect. High-order TVD (Total Variation Diminishing) schemes being oscillation-free can yield high-order accu-
rate solutions without introducing wiggles and therefore are utilised in this work. A multi-domain approach in-
tegrated within the dual-phase-lag numerical model allows the computation of microscopic conjugate heat
transfer problems. Effects of different phase-lag values on the behaviour of heat transfer are investigated. The
model is capable of predicting temperature patterns transiting from the wave nature of heat propagation to ad-
ditional diffusion being experienced within different solid regions via phonon–electron interaction or phonon
scattering.
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1. Introduction

In many engineering applications, heat conduction can be aptly de-
scribed by the classical diffusion theory, which generally assumes that
any thermal disturbancewill cause an instantaneous response through-
out the object, and the propagation speed of heat is infinite. However,
such an assumption becomes questionable where there are regimes
where such a macroscopic consideration is no longer applicable in spa-
tial and/or temporal development of the heat transfer in microscopic
problems such as heat conduction in biological materials [1] and
layered-film heating in superconductors, fins and reactor walls [2].

A range of modified heat conduction models have been proposed to
resolve microscopic heating problems. Cattaneo [3] and Vernotte [4]
proposed a macroscopic thermal wave model to predict the finite
speed of thermal propagation. The limitation of this model is that it
only contributes to a microscopic response in time without the consid-
eration of the micro-structured effect. Pioneered by Anisimov et al. [5],
and advanced by Qiu and Tien [6], the two-step model, which modifies
the phenomenological of the thermal wave model, captures nonethe-
less the fast transient heating behaviour as two separate stages: radia-
tion energy deposited on electrons and energy exchange between
electrons and the lattice. Compared to the two-step model where its

emphasis is on metal films, the phonon scattering model (pure phonon
scattering model) as proposed by Guyer and Krumhansl [7] focuses on
the heat transport by phonon scattering. Such a model has been used
to evaluate the thermal behaviour of a dielectric solid. To better shed
light on the mechanism of non-equilibrium thermodynamic transition
and the energy exchange in describing the microscopic heat phenome-
non both in time and space, i.e. both for metal and dielectric, Tzou [8]
developed a dual-phase-lag (DPL)model to depict the transient thermal
phenomenon. Through the introduction of two lumped time parame-
ters, this model accounts for the lagging behaviour caused by phonon–
electron interaction in metals and the phonon scattering in dielectric
media.

Significant efforts have been concentrated on the development of an
explicit mathematical solution of the DPL model. Tzou et al. [9] solved
the one-dimensional initial-boundary value problemwith the initiation
of a surface temperature-jump and numerically computed the inverse
Laplace transformation integral with Riemann sum approximation. Liu
et al. [10] also addressed the transient phenomenon in pulsed-laser-
induced heating for nanoshell-based hyperthermia through Laplace in-
version and Riemann sum approximation. Tang and Araki [11] attained
the temperature distribution in a finite slab with an energy source near
the surface via the Green's functionmethod and finite integral transfor-
mation technique. These analytical solutions to the DPL heat conduction
have nonetheless been obtained through very simple initial-boundary
value problems. Strictly speaking, the intrinsic complexity of the DPL
heat conduction equation (high-order mixed derivative with respect
to space and time) poses a major obstacle towards the attainment of a
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general solution. Also, whenever a complicated geometry or a variable
physical property is involved, a numerical solution is deemed to be
the most appropriate (and perhaps in some circumstances the only)
option.

The present study employs a purely numerical explicit TVD (total-
variation-diminishing) scheme which has been developed based on
the proposedmodel by Shen and Zhang [12] for a single-domain analy-
sis. In contrast to Shen and Zhang [12] who have formulated their
governing equations using dimensionless characteristic variables, the
present work presents an extension of this methodology to multi-
domain and formulation in terms of dimensional characteristic vari-
ables in order to clearly highlight the physical significance of the
governing equations. Based on the assessment by Yang [13] on various
TVD schemes to predict the thermal wave propagation, it can be been
shown that TVD schemeswere able to provide oscillation-free and accu-
rate numerical results. Third-order TVD schemes are considered and ex-
plored in this present study.

2. Mathematical formulation

In order to account for the microscopic effect such as the phonon–
electron interaction, the DPL model for heat transfer introduces two
phase lags or lumped time parameters, also known as the relaxation
times, to both heat flux and temperature gradient. The corresponding
macro-scale lagging behaviour can be described as:

q R; t þ tq
� � ¼ −k∇T R; t þ tTð Þ: ð1Þ

The above equation constitutes that the temperature gradient being
established at a positionR at time t+tT causes the heat to propagate at a
different instant of time t+tq.

From a mathematical viewpoint, the heat flux precedes the temper-
ature gradient when tqb tT, whereas the temperature gradient precedes
the heat flux for tqN tT. From a physical viewpoint, the case of tqb tT
presents the premise of unacceptable conclusions as it has been argued
by Zhou et al. [14] that the DPL model may violate the second law of
thermodynamics implying that heat can spontaneously flow from a
low-temperature to a high-temperature. However, the specific case of
tqb tT especially for ultrafast pulse-laser heating can be considered
since such phenomenon can be corroborated by the non-equilibrium
entropy production theory [15]. Taking a first order Taylor series expan-
sion on both sides of Eq. (1) with reference to time t yields

q R; tð Þþtq
∂q
∂t

R; tð Þ ¼ −k ∇T R; tð Þ þ tT
∂
∂t

∇T R; tð Þð Þ
� �

: ð2Þ

The energy conservation with constant properties can be written as

ρCp
∂T
∂t

R; tð Þ ¼ −∇ ∙ q R; tð Þ þ Q R; tð Þ ð3Þ

Taking the grad of Eq. (3) yields

ρCp
∂
∂t

∇T R; tð Þð Þ ¼ −∇ ∇ ∙ q R; tð Þ½ � þ ∇Q R; tð Þ: ð4Þ

Comparing with the classical diffusion (tq=tT=0), the phase lag of
the heat flux is responsible for the wave nature of the non-Fourier heat
transfer. On the other hand, the phase lag of the temperature gradient tT
brings an additional diffusion-like feature into the thermal wave equa-
tion (tq≠0 and tT=0).

For one-dimensional problems, Eqs. (2)–(4) take the form in the
Cartesian coordinate system as
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and in the Spherical coordinate system as

ρCp
∂T
∂t

r; tð Þ ¼ −
1
r2

∂ r2q
� �
∂r

r; tð Þ þ Q r; tð Þ ð8Þ

q r; tð Þ þ tq
∂q
∂t

r; tð Þ ¼ −k
∂T
∂r

r; tð Þ þ tT
∂ ∇T r; tð Þð Þ

∂t

� �
ð9Þ

ρCp
∂
∂t

∇T r; tð Þð Þ ¼ −
∂
∂r

1
r2

∂ r2q
� �
∂r

r; tð Þ
" #

þ ∂Q
∂r

r; tð Þ ð10Þ
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ρCp
∂T
∂t

r; tð Þ ¼ −
∂q
∂r

r; tð Þ−2q
r

r; tð Þ þ Q r; tð Þ ð11Þ

q r; tð Þ þ tq
∂q
∂t

r; tð Þ ¼ −k
∂T
∂r

r; tð Þ þ tT
∂ ∇T r; tð Þð Þ

∂t

� �
ð12Þ

ρCp
∂
∂t

∇T r; tð Þð Þ ¼ −
∂2q
∂r2

r; tð Þ−2
r
∂q
∂r

r; tð Þ þ 2q
r2

r; tð Þ þ ∂Q
∂r

r; tð Þ: ð13Þ

For the sake of brevity, the above equations can be written in vector
form as

∂E
∂t

þ A
∂E
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¼ S: ð14Þ

In the Cartesian coordinate system, where ξ=x,
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In the Spherical coordinate system, where ξ=r,
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In Eq. (15), it should be noted that ∂ð∇Tðx;tÞÞ
∂t is determined from the

right hand side of Eq. (7). Analogously, ∂ð∇Tðr;tÞÞ∂t in Eq. (16) is determined
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