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a b s t r a c t 

Some types of mixed subgrid-scale (SGS) models combining an isotropic eddy-viscosity model and a 

scale-similarity model can be used to effectively improve the accuracy of large eddy simulation (LES) 

in predicting wall turbulence. Abe (2013) has recently proposed a stabilized mixed model that maintains 

its computational stability through a unique procedure that prevents the energy transfer between the 

grid-scale (GS) and SGS components induced by the scale-similarity term. At the same time, since this 

model can successfully predict the anisotropy of the SGS stress, the predictive performance, particularly at 

coarse grid resolutions, is remarkably improved in comparison with other mixed models. However, since 

the stabilized anisotropy-resolving SGS model includes a transport equation of the SGS turbulence energy, 

k SGS , containing a production term proportional to the square root of k SGS , its applicability to flows with 

both laminar and turbulent regions is not so high. This is because such a production term causes k SGS to 

self-reproduce. Consequently, the laminar–turbulent transition region predicted by this model depends on 

the inflow or initial condition of k SGS . To resolve these issues, in the present study, the mixed-timescale 

(MTS) SGS model proposed by Inagaki et al. (2005) is introduced into the stabilized mixed model as the 

isotropic eddy-viscosity part and the production term in the k SGS transport equation. In the MTS model, 

the SGS turbulence energy, k es , estimated by filtering the instantaneous flow field is used. Since the k es 

approaches zero by itself in the laminar flow region, the self-reproduction property brought about by 

using the conventional k SGS transport equation model is eliminated in this modified model. Therefore, 

this modification is expected to enhance the applicability of the model to flows with both laminar and 

turbulent regions. The model performance is tested in plane channel flows with different Reynolds num- 

bers and in a backward-facing step flow. The results demonstrate that the proposed model successfully 

predicts a parabolic velocity profile under laminar flow conditions and reduces the dependence on the 

grid resolution to the same degree as the unmodified model by Abe (2013) for turbulent flow conditions. 

Moreover, it is shown that the present model is effective at transitional Reynolds numbers. Furthermore, 

the present model successfully provides accurate results for the backward-facing step flow with various 

grid resolutions. Thus, the proposed model is considered to be a refined anisotropy-resolving SGS model 

applicable to laminar, transitional, and turbulent flows. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The main weakness of large eddy simulation (LES) is that a 

high grid density is required near the wall, especially in the 

streamwise and spanwise directions, relative to that for the sim- 

ulation of the Reynolds-averaged Navier–Stokes equation (RANS). 

This high grid density greatly increases the computational cost at 

high Reynolds numbers. Meanwhile, it is also well known that 

some types of mixed subgrid-scale (SGS) models combining an 
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isotropic eddy-viscosity model and a scale-similarity model are ef- 

fective in reducing the grid resolution required to maintain a high 

prediction accuracy. Concerning scale-similarity model, the Bar- 

dina model ( Bardina et al., 1983 ) is the most representative one. 

This model has been proved to remarkably improve the correla- 

tion between the modeled and actual SGS stresses in many a pri- 

ori tests. However, this model provides insufficient mean energy 

transfer from the grid-scale (GS) field to the SGS field, and thus it 

must be adopted together with an eddy-viscosity model like the 

Smagorinsky model, i.e., a mixed model. Such a mixed model usu- 

ally yields better results than eddy-viscosity models. Moreover, to 
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enhance the effectiveness of the mixed model, Salvetti and Baner- 

jee (1995) proposed a dynamic two-parameter mixed model, in 

which the model coefficient of the Bardina model term in the 

mixed model is defined as a variable and is determined automati- 

cally using the dynamic procedure by Germano et al. (1991) as well 

as the model parameter for the Smagorinsky model term. Further- 

more, Horiuti (1997) improved the dynamic two-parameter mixed 

model by introducing a new scale-similarity term that models the 

modified SGS Reynolds stress, where the model coefficient of the 

new term is also computed dynamically. In the dynamic procedure, 

averaging in homogeneous directions is preferable in calculating 

the model parameters to avoid numerical instability. However, in 

engineering applications, there is generally no homogeneous direc- 

tion, and thus the model parameters calculated at each grid point 

without averaging is used. In such cases, the obtained model pa- 

rameter often causes the computation to be unstable, which im- 

poses the use of a smaller computational time step and reduces 

the prediction accuracy. 

On the other hand, Abe (2013) has recently proposed a sta- 

bilized mixed model, which maintains computational stability by 

using a unique procedure to prevent the energy transfer between 

the GS and SGS components induced by the scale-similarity term. 

At the same time, the transport equation of SGS turbulence en- 

ergy, k SGS , is solved, which is used not only to model the SGS eddy 

viscosity but also to scale the magnitude of the scale-similarity 

part. Since the model successfully predicts the anisotropy of the 

SGS stress, the predictive performance, particularly at coarse grid 

resolutions, is remarkably improved. Additionally, Abe and Oht- 

suka (2014) has reported that the turbulent vortex motions en- 

hanced by the scale-similarity term probably contributes to the 

improvement of the prediction accuracy. 

However, the production term of the k SGS transport equation 

employed in the stabilized anisotropy-resolving SGS model is pro- 

portional to the square root of k SGS , which causes it to self- 

reproduce, and to the grid-filter width that is not related to the 

physical phenomena. Therefore, its applicability to flows accom- 

panying both laminar and turbulent regions, which are commonly 

encountered in engineering applications, is considered not so high. 

For example, the laminar–turbulent transition predicted by the 

model probably depends on the inflow condition of k SGS and the 

employed grid resolution. In addition, the definition of the grid- 

filter width used in the model differs significantly from the con- 

ventional width used in LES, which may reduce of the prediction 

accuracy in further applications to multi-physics simulations, e.g., 

flows with heat and mass transfer and flows including combustion 

or chemical reactions. 

To resolve these issues, in the present study, the mixed- 

timescale (MTS) SGS model proposed by Inagaki et al. (2005) is in- 

troduced into the stabilized anisotropy-resolving SGS model as the 

isotropic eddy-viscosity part and the production term in the trans- 

port equation of k SGS . In the MTS model, the SGS turbulence en- 

ergy, k es , estimated by filtering the instantaneous flow field is used. 

Since the k es approaches zero by itself in the laminar flow region, 

as demonstrated by Inagaki et al. (2005) , the self-reproduction 

property brought about by using the conventional k SGS transport 

equation model could be eliminated. Thus, the present modifica- 

tion is expected to enhance the applicability of the model to flows 

in the laminar–turbulent transition region ( Makino et al., 2015 ). 

The use of mixed timescale extends the applicability of the model 

to a variety of flow fields, as described by Inagaki et al. (2005) ; 

2010 ). Moreover, it was confirmed that both the prediction accu- 

racy and the computational stability of the MTS model are higher 

than those of the dynamic Smagorinsky (DS) model proposed by 

Germano et al. (1991) . Furthermore, Inagaki et al. (2012) have pro- 

posed an MTS model for the thermal field, which is an extended 

version of the MTS model for the velocity field. Since the thermal 

MTS model has been confirmed to be a refined SGS model reflect- 

ing the Prandtl number effect by introducing the timescale of the 

thermal field, it is expected that the present anisotropy-resolving 

SGS model could be easily extended into an SGS model for the 

thermal and scalar fields. 

In the present study, to enable the use of the conventional 

definition of the grid-filter width instead of the original one in 

Abe (2013) , the influence of the definition is also investigated. 

It is found that some modifications are necessary for the use of 

the conventional definition to obtain prediction accuracy compa- 

rable to that of the Abe’s original model, which is described in 

Section 5.1 . After these modifications are made, the MTS model 

is introduced into the modified model. The performance of the 

modified model is tested in plane channel flows with various 

grid resolutions, as described in Section 5.2 . It is also applied to 

a backward-facing step flow in Section 5.3 for the validation in 

more complex flows. Finally, Section 5.4 discusses the effective- 

ness of the present model in the plane channel flows at transi- 

tional Reynolds numbers. 

2. Governing equations and stabilized anisotropy-resolving 

subgrid-scale model 

2.1. Governing equations 

The basic equations are the filtered Navier–Stokes and continu- 

ity equations for an incompressible fluid, which are given as fol- 

lows: 

∂ u j 

∂x j 
= 0 , (1) 

∂ u i 
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∂ u j u i 
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τi j = u i u j − u i u j , (3) 

where ¯( ) denotes the grid-filtering operator and τ ij is the SGS 

stress, which must be modeled. 

2.2. Stabilized anisotropy-resolving subgrid-scale model 

The stabilized anisotropy-resolving SGS model proposed by 

Abe (2013) , hereafter referred to as the AR-Abe model, is based on 

a mixed model that expresses the SGS stress as the following lin- 

ear combination of an isotropic eddy-viscosity model and a scale- 

similarity model: 
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where νt is the SGS eddy viscosity, k SGS is the SGS turbulence en- 

ergy, and τ ∗
i j 

= τi j − 1 
3 δi j τkk . The ( ̃  ) denotes the space filtering op- 

erator. The representative points of this model, which appears in 

the second term on the right–hand side of Eq. (4) , are as follows: 

• Using ν ′ defined by Eq. (6) causes the energy dissipation from 

the scale-similarity part to be zero. 
• The magnitude of the scale-similarity part is scaled by (

2 k SGS / τ
′ 
kk 

)
. 
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