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a b s t r a c t 

Numerical models based on Reynolds-Averaged Navier-Stokes (RANS) equations are widely used in en- 

gineering turbulence modeling. However, the RANS predictions have large model-form uncertainties for 

many complex flows, e.g., those with non-parallel shear layers or strong mean flow curvature. Quantifi- 

cation of these large uncertainties originating from the modeled Reynolds stresses has attracted attention 

in the turbulence modeling community. Recently, a physics-based Bayesian framework for quantifying 

model-form uncertainties has been proposed with successful applications to several flows. Nonetheless, 

how to specify proper priors without introducing unwarranted, artificial information remains challenging 

to the current form of the physics-based approach. Another recently proposed method based on random 

matrix theory provides the prior distributions with maximum entropy, which is an alternative for model- 

form uncertainty quantification in RANS simulations. This method has better mathematical rigorousness 

and provides the most non-committal prior distributions without introducing artificial constraints. On 

the other hand, the physics-based approach has the advantages of being more flexible to incorporate 

available physical insights. In this work, we compare and discuss the advantages and disadvantages of 

the two approaches on model-form uncertainty quantification. In addition, we utilize the random matrix 

theoretic approach to assess and possibly improve the specification of priors used in the physics-based 

approach. The comparison is conducted through a test case using a canonical flow, the flow past periodic 

hills. The numerical results show that, to achieve maximum entropy in the prior of Reynolds stresses, 

the perturbations of shape parameters in Barycentric coordinates are normally distributed. Moreover, the 

perturbations of the turbulence kinetic energy should conform to log-normal distributions. Finally, the 

result sheds light on how large the variance of each physical variable should be compared with each 

other to achieve the approximate maximum entropy prior. The conclusion can be used as a guidance for 

specifying proper priors in the physics-based, Bayesian uncertainty quantification framework. 

© 2016 Elsevier Inc. All rights reserved. 

Notations 

We summarize the convention of notations below because of 

the large number of symbols used in this paper. The general con- 

ventions are as follows: 

1. Upper case letters with brackets (e.g., [ R ]) indicate matrices or 

tensors; lower case letters with arrows (e.g., � v ) indicate vec- 

tors; undecorated letters in either upper or lower cases indicate 

scalars. An exception is the spatial coordinate, which is denoted 

as x for simplicity but is in fact a 3 × 1 vector. Tensors (matri- 
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ces) and vectors are also indicated with index notations, e.g., R ij 
and v i with i, j = 1 , 2 , 3 . 

2. Bold letters (e.g., [ R ]) indicate random variables (including 

scalars, vectors, and matrices), the non-bold letters (e.g., [ R ]) 

indicate the corresponding realizations, and underlined letters 

(e.g., [ R ]) indicate the mean. 

3. Symbols M 

+ 
d 
, and M 

+0 
d 

indicate the sets of symmetric positive 

definite and symmetric positive semi-definite matrices, respec- 

tively, of dimension d × d with the following relation: M 

+ 
d 

⊂
M 

+0 
d 

⊂ M 

s 
d 
. 

This work deals with Reynolds stresses, which are rank two ten- 

sors. Therefore, it is implied throughout the paper that all random 

or deterministic matrices have sizes 3 × 3 with real entries un- 

less noted otherwise. Finally, a list of nomenclature is presented in 

Appendix C . 
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1. Introduction 

Despite the increasing availability of computational resources in 

the past decades, high-fidelity simulations (e.g., large eddy simula- 

tion, direct numerical simulation) are still not affordable for most 

practical problems. Numerical models based on Reynolds-Averaged 

Navier–Stokes (RANS) equations are still the dominant tools for the 

prediction of turbulent flows in industrial and natural processes. 

However, for many practical flows, e.g., those with strong adverse 

pressure gradient, non-parallel shear layers, or strong mean flow 

curvature, the predictions of RANS models have large uncertainties. 

The uncertainties are mostly attributed to the phenomenological 

closure models for the Reynolds stresses ( Oliver and Moser, 2009; 

Pope, 20 0 0 ). Previous effort s in quantifying and reducing model- 

form uncertainties in RANS simulations have mostly followed para- 

metric approaches, e.g., by perturbing, tuning, or inferring the pa- 

rameters of the closure models of the Reynolds stress ( Edeling 

et al., 2014a; 2014b; Margheri et al., 2014 ). 

Recently, the turbulence modeling community has recognized 

the limitations of the parametric approaches and started investi- 

gating non-parametric approaches where uncertainties are directly 

injected into the Reynolds stresses ( Dow and Wang, 2011; Emory 

et al., 2013; 2011; Gorlé and Iaccarino, 2013; Oliver and Moser, 

2009; Xiao et al., 2015 ). In their pioneering work, Iaccarino et al. 

( Emory et al., 2013; 2011; Gorlé and Iaccarino, 2013 ) proposed 

a physics-based approach, where the Reynolds stress is projected 

onto six physically meaningful dimensions (its shape, magnitude, 

and orientation). They further perturbed the Reynolds stresses to- 

wards the limiting states in the physically realizable range, based 

on which the RANS prediction uncertainties are estimated. Build- 

ing on the work of Iaccarino et al. ( Emory et al., 2013; 2011; 

Gorlé and Iaccarino, 2013 ), Xiao et al. (2015) modeled the Reynolds 

stress discrepancy as a zero-mean random field and used a physical- 

based parameterization to systematically explore the uncertainty 

space. They further used Bayesian inferences to incorporate obser- 

vation data to reduce the model-form uncertainty in RANS sim- 

ulation. While the physics-based method has achieved significant 

successes, the method in its current form has two major limita- 

tions. First, uncertainties are only injected to the shape and mag- 

nitude of the Reynolds stresses but not to the orientations, and 

thus they do not fully explore the uncertainty space. Second, it is 

challenging to specify prior distributions over these physical vari- 

ables without introducing artificial constraints. The priors are crit- 

ical for uncertainty propagation and Bayesian inference, particu- 

larly when the amount of data is limited ( Wang et al., 2015 ). Xiao 

et al. (2015) specified Gaussian distribution for the perturbations 

of shape parameters in natural coordinates and log-normal distri- 

bution for the turbulence kinetic energy discrepancy. The pertur- 

bations in all physical parameters share the same variance field. 

However, it is not clear if or how much artificial constraints are 

introduced into the prior with this choice. Moreover, without suf- 

ficient physical insight, it is not clear how large the variance of 

perturbation for each physical variable should be relative to each 

other. 

In information theory, Shannon entropy is an important mea- 

sure of the information contained in each probability distribution. 

The distribution best representing the current state is the one with 

the largest information entropy, which is known as principle of 

maximum entropy ( Guiasu and Shenitzer, 1985 ). This principle has 

been used as a guideline to specify prior distributions in Bayesian 

framework ( Jaynes, 1957 ). Although this theory has been exten- 

sively used in information processing problems such as communi- 

cations and image processing, the application in conjunction with 

random matrix theory applied to physical systems is only a recent 

development, which was first proposed and developed by Soize 

(20 0 0) and Das and Ghanem (2009) . Built on the theories devel- 

oped by Soize et al., Xiao and Ghanem (2016) proposed a random 

matrix theoretic (RMT) approach with maximum entropy princi- 

ple to quantify model-form uncertainties in RANS simulations. The 

RMT approach is an alternative to the physics-based approach in 

quantifying model-form uncertainties in RANS simulations. In this 

approach, the realizability of perturbed Reynolds stresses is guar- 

anteed automatically in a mathematical way, since the uncertain- 

ties are directly injected within the set M 

+0 
d 

of positive semidef- 

inite matrices. In addition, the RMT approach can provide objec- 

tive priors for Bayesian inferences that satisfy the given constraints 

without introducing artificial information. 

While the RMT approach has better mathematical rigorousness 

and provides a proper prior of the Reynolds stress tensors with 

maximum entropy, it has its own limitations. In particular, since 

the perturbations are directly introduced to the Reynolds stress it- 

self, it is not straightforward to incorporate physical insights that 

are available for specific flows into the RMT approach. For exam- 

ple, for the flow in a channel with square cross section, the dis- 

crepancies of RANS-predicted Reynolds stress mainly come from 

the shape of the Reynolds stress tensor, while the predicted tur- 

bulence kinetic energy is rather accurate ( Wu et al., 2015 ). In 

this case, the perturbation variances of shape parameters should 

be specified much larger than that of the turbulence kinetic en- 

ergy. Nonetheless, this piece of information is difficult to incor- 

porate into the RMT approach. In comparison, the physics-based 

approach is more flexible and thus may be preferred in engineer- 

ing applications for both uncertainty quantification and Bayesian 

inferences. The objective of this work is twofold. First, we com- 

pare the physics-based approach and RMT approach on model- 

form uncertainty quantification and propagation. The advantages 

and disadvantages of both approaches are discussed. Second, we 

use the results from the RMT approach to assess the artificial con- 

straints introduced in the physics-based approach and possibly im- 

prove the specification of physics-based priors under the context of 

Bayesian inference. To this end, the Reynolds stress samples with 

maximum entropy distribution obtained in the RMT approach are 

first projected onto the physically meaningful dimensions. Then, 

the distributions in the six physical dimensions are used to com- 

pare with the priors specified in the physics-based approach. The 

perturbed Reynolds stresses from both approaches are propagated 

to the quantities of interest (QoIs), e.g., velocity field and wall 

shear stress, and the differences of these propagated QoIs are in- 

vestigated. The comparisons can provide useful insights on the 

model-from uncertainty quantification in RANS modeling. More- 

over, they also sheds light on the specification of appropriate prior 

for each physical variable when no further physical knowledge is 

available. 

This work is the first attempt to fully explore the uncertainty 

space in physics-based approach. The orientations of Reynolds 

stresses are perturbed, and their impacts on the propagated QoIs 

are investigated. Note that in this work we only focus on uncer- 

tainty propagation (i.e., prior). The assessment of posterior from 

Bayesian inference is not included. This is because the inversion 

schemes currently used for reducing RANS model-form uncer- 

tainties are approximate Bayesian approaches, e.g., iterative en- 

semble Kalman filtering in Wang et al. (2015) and Xiao et al. 

(2015) , which are not sensitive to the prior and cannot provide 

a posterior uncertainty estimation with a comparable accuracy to 

that obtained from the exact Bayesian sampling scheme ( Law and 

Stuart, 2012 ). This compromise is under the consideration of high 

computational costs of RANS model evaluations, which make exact 

Bayesian approach (i.e., Markov Chain Monte Carlo (MCMC) sam- 

pling scheme) prohibitively expensive. Obtaining an accurate pos- 

terior is still an ongoing work, which can be possibly achieved by 

utilizing recently developed dimension reduction methods (e.g., ac- 

tive subspace methods Constantine et al., 2015 ) and fast sampling 
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