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a b s t r a c t

Our objective in this work is to provide a better understanding of the various model updating strategies
that utilize mathematical means to update a computer model based on both physical and computer
observations. We examine different model updating formulations, e.g. calibration and bias-correction,
as well as different solution methods. Traditional approaches to calibration treat certain computer model
parameters as fixed over the physical experiment, but unknown, and the objective is to infer values for
the so-called calibration parameters that provide a better match between the physical and computer
data. In many practical applications, however, certain computer model parameters vary from trial to trial
over the physical experiment, in which case there is no single calibrated value for a parameter. We pay
particular attention to this situation and develop a maximum likelihood estimation (MLE) approach for
estimating the distributional properties of the randomly varying parameters which, in a sense, calibrates
them to provide the best agreement between physical and computer observations. Furthermore, we
employ the newly developed u-pooling method (by Ferson et al.) as a validation metric to assess the accu-
racy of an updated model over a region of interest. Using the benchmark thermal challenge problem as an
example, we study several possible model updating formulations using the proposed methodology. The
effectiveness of the various formulations is examined. The benefits and limitations of using the MLE
method versus a Bayesian approach are presented. Our study also provides insights into the potential
benefits and limitations of using model updating for improving the predictive capability of a model.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Computer models have been widely used in engineering design
and analysis to simulate complex physical phenomena. The accu-
racy or adequacy of a computer model can be assessed by means
of model validation, which refers to the process of determining
the degree to which a computational simulation is an accurate rep-
resentation of the real world from the perspective of the intended
uses of the model [1]. While there exists no unified approach to
model validation, it is increasingly recognized that model valida-
tion is not merely a process of assessing the accuracy of a computer
model, but should also help improve the model based on the vali-
dation results.

Strategies for model improvement roughly fall into two catego-
ries: model refinement and model updating. Model refinement in-
volves changing the physical principles in modeling or using
other means to build a more sophisticated model that better repre-
sents the physics of the problem by, for example, using a non-lin-

ear finite element method to replace a linear method, correcting
and refining boundary conditions, or introducing microscale mod-
eling in addition to macroscale modeling, etc. Model updating, on
the other hand, utilizes mathematical means (e.g. calibrating mod-
el parameters and bias-correction) to match model predictions
with the physical observations. While model refinement is desir-
able for fundamentally improving the predictive capability, the
practical feasibility of refinement is often restricted by available
knowledge and computing resources. In contrast, model updating
is a cheaper means that can be practical and useful if done cor-
rectly. Here, predictive capability refers to the capability of making
accurate predictions in domains (or locations) where no physical
data are available.

While various model updating strategies (formulations and
solution methods) exist, there is a lack of understanding of the
effectiveness and efficiency of these methods. It is our interest in
this work to examine various model updating strategies to achieve
a better understanding of their merits. We are particularly
interested in the role that model updating plays versus model
validation and prediction. A detailed review is provided in Section
3. In summary, conventional calibration approaches [2] assume
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calibration parameters are fixed and estimated, typically using
least squares to match the model with the physical observations.
This type of approach for model updating is inconsistent with
the primary concerns of model validation and prediction in which
various uncertainties should be accounted for either explicitly or
implicitly. Examples of such uncertainties include experimental er-
ror, lack of data, uncertain model parameters, and model uncer-
tainty (systematic model inadequacy). The more recent Bayesian
style calibration, also named calibration under uncertainty (CUU)
or stochastic calibration, treats calibration parameters as unknown
entities that are fixed over the course of the physical experiment.
Initial lack of knowledge of the parameters is represented by
assigning prior distributions to them, and, given the experimental
data, this lack of knowledge is revised by updating their distribu-
tions (from priors to posteriors) based on the observed data
through Bayesian analysis [3,4]. However, as we discuss in a more
thorough examination in Section 3.2, several limitations of apply-
ing the Bayesian calibration approaches are identified in this work.

One limitation of the aforementioned calibration approaches is
that the calibration parameters are assumed to remain fixed over
the entire course of the physical experiment and beyond. In con-
trast, it is frequently the case that some parameters vary randomly
over the physical experiment, perhaps due to manufacturing vari-
ation, variation in raw materials, variation in environmental or
usage conditions, etc. This violates the assumptions under which
the Bayesian or regression-based calibration analyses are derived.
In this situation, rather than assuming fixed parameters and updat-
ing their posterior distributions to represent our lack of knowledge
of them, it is more reasonable to treat them a randomly varying
and estimate their distributional properties by integrating the
physical data with the model. In essence, the distributional proper-
ties (e.g. the mean and variance of the randomly varying parame-
ters) become the calibration parameters for the model, and the
objective is to identify values for them that provide the best agree-
ment with the observed distributional properties (e.g. the disper-
sion [5]) of the physical experimental data. In this paper, we
present a maximum likelihood estimation (MLE) [6] approach for
accomplishing this. The MLE method is used to estimate a set of
unknown parameters (heretofore called model updating parame-
ters) associated with several modeling updating formulations,
which include the distributional properties of parameters that vary
randomly over the experiment, as well as well as more traditional
fixed calibration parameters and quantities associated with bias-
correction and random experimental error.

The remainder of the paper is organized as follows. In Section 2,
we discuss the role that model updating plays versus model valida-
tion and prediction. In Section 3, we examine the existing model
updating formulations under two categories, namely, model bias-
correction and calibration. The popular Bayesian approach is
described and its limitations are highlighted. In Section 4, we de-
scribe our proposed MLE based model updating approach, together
with the introduction of the u-pooling validation metric. In Section
5, a benchmark thermal challenge problem adopted by the Sandia
Validation workshop [7,8] is used as an example to illustrate the
proposed approach, draw important conclusions, and portray these

conclusions in relation to conclusions from prior studies. Section 6
is the closure with a summary of the features of the proposed
method, the relative merits of different approaches, the insights
gained, and future research directions.

2. Role of model updating vs. model validation

In this work, model updating is viewed as a process that contin-
uously improves a computer model through mathematical means
based on the results from newly added physical experiments, until
the updated model satisfies the validation requirement or the re-
source is exhausted. Therefore, even though model updating is
interrelated with model validation, it is viewed as a separate activ-
ity that occurs before ‘‘validation”. As shown in Fig. 1, the model
updating procedure integrates the computer simulation model ym

with the physical experiment data ye to yield an updated model
ym0 ð�Þ. This updated model is then subject to a validation procedure
that utilizes additional physical experiments ye in the intended re-
gion of interest for validation. As noted from this diagram, unlike
many contemporary model validation works, model validation in
this work is used to evaluate an evolved, updated model ym0 ð�Þ,
rather than the original computer model ym(�). Besides, the up-
dated model ym0 ð�Þ is the one used for making future prediction
ypred(�) with the consideration of various sources of uncertainties.
For implementing model updating and validation in a computa-
tionally efficient manner, it is indicated in Fig. 1 that a metamodel
(surrounded by a dashed box) may be used to substitute the origi-
nal computer model if it is expensive to compute.

As more details are provided in the remaining sections,model
updating utilizes mathematical means (e.g. calibrating model
parameters, bias-correction) to match model predictions with the
physical observations. Model updating provides not only the for-
mulation of an updated model, but also the characterization of
model updating parameters H, together with the associated
assumptions. As noted, the model updating procedure, during
which ym(�) is treated as a black-box, is largely driven by the ob-

Nomenclature

x = {x1,x2, . . . ,xn} n controllable input variables
h = {h1,h2, . . . ,hm} m uncontrollable input variables
ye(x) physical experiments
ym(x) or ym(x,h) computer model
d(x) bias function
e experimental error

ym0 ðx;HÞ updated model
ypred(x) predictive model
H model updating parameters
L(H) likelihood function
Fxe

i
ðye

i Þ cumulative distribution function (CDF) at ye
i
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Fig. 1. Relationship of model updating, model refinement, and model validation.
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