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a b s t r a c t

Non-matching meshes and domain decomposition techniques based on Lagrange multipliers provide a
flexible and efficient discretization technique for variational inequalities with interface constraints.
Although mortar methods are well analyzed for variational inequalities, its application to dynamic
thermo-mechanical contact problems with friction is still a field of active research. In this work, we
extend the mortar approach for dynamic contact problems with Coulomb friction to the thermo-mechan-
ical case. We focus on the discretization and on algorithmic aspects of dynamic effects such as frictional
heating and thermal softening at the contact interface. More precisely, we generalize the mortar concept
of dual Lagrange multipliers to non-linear Robin-type interface conditions and apply local static conden-
sation to eliminate the heat flux. Numerical examples in the two-dimensional and the three-dimensional
setting illustrate the flexibility of the discretization on non-matching meshes.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of frictional contact problems is still
a challenging task and plays an important role in many industrial
applications. Mortar techniques became a promising discretiza-
tion method for such type of problems involving non-matching
meshes, see, e.g. [9,21,3,5]. Recently, a lot of work has been done
to generalize these concepts to dynamic contact problems includ-
ing friction and large deformations. Due to the sliding of the dif-
ferent bodies, most of the frictional work results in the generation
of heat. This observation motivates the extension of the mortar
method to thermo-mechanical dynamic contact problems includ-
ing frictional heating and thermal softening effects at the contact
interface.

The mortar method is a hybrid formulation in space. The dis-
placement and the temperature field enter as primal variable,
whereas the contact stress and the thermal flux at the contact
interface are the dual variables. Mathematically speaking, the dual
variables, also denoted as Lagrange multipliers, enforce the
interface conditions. Here, we have two types of constraints: the
non-penetration condition and the friction law for the mechanical
unknowns and the generation of heat as well as the flow condition
for the thermal variables. The main focus of this paper is on the
treatment of the Robin-type thermal interface condition within
the mortar framework. Due to the use of biorthogonal basis func-

tions for the mechanical dual variable, the mechanical interface
constraints at the contact zone decouple for each node. Although
the mortar approach can be seen as a segment-to-segment formu-
lation, the possible decoupling results in a node-to-segment ap-
proach which can be handled more easily from the numerical
point of view. In contrast, a straightforward application of the con-
cept of biorthogonality to Robin-type constraints does not decou-
ple the nodes. To benefit from static condensation, we introduce
a stable operator which can be interpreted as mass lumping at
the interface.

For the formulation of the linear thermo-elastic constitutive
equations, we follow [2,17]. A more general thermo-plasticity for-
mulation is given in [15]. The extension to dynamic thermo-
mechanical contact mechanics can be found, e.g. in [10,13,12]
and is also considered in the textbooks [20,17]. For the modeling
of the contact heat flux, we use the linear model proposed in
[13]. More general models can be found in [18]. For the considered
formulation with a coefficient of friction depending on the temper-
ature we refer to [13,12].

We start with the introduction of the constitutive equations
and the interface conditions in Section 2. Section 3 presents the
time discretization based on the midpoint scheme. The mortar
formulation and the space discretization can be found in Section
4, followed by the resulting algebraic formulation in Section 5.
Some comments on the applied numerical algorithm to solve
the arising non-linear equations are given in Section 6. The last
section shows numerical examples both in the two- and three-
dimensional setting and illustrates the flexibility of the consid-
ered discretization.
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2. Problem formulation for linear thermo-elasticity

We consider two bodies in their reference configuration
Xi � Rd; i 2 fm; sg, with the dimension d ¼ 2;3. The superscript s
stands for the slave body and m for the master body, as it is com-
mon in the framework of mortar techniques. We are interested in
the displacement field uiðx; tÞ and the temperature hiðx; tÞ for
ðx; tÞ 2 Xi � ð0; TÞ, where ð0; TÞ is the given time interval. The local
balance of momentum is given by

.i €ui � DivðPiÞ ¼ f i in Xi � ð0; TÞ: ð2:1Þ

Here we denote by .i the mass density of the body Xi and by Pi the
first Piola–Kirchhoff stress tensor. The vector f i describes the given
body forces acting on Xi. In the case of linear thermo-elasticity, the
stress tensor is given by

Pi :¼ kitrðeiÞIdþ 2liei � dKiaiðhi � h0ÞId; ð2:2Þ

see [2,17], where the linearized strain tensor satisfies ei :¼ 1
2 ðruiþ

ðruiÞ>Þ. The Lamé parameters are obtained by ki :¼ ðEimiÞ=ðð1þ miÞ
ð1� 2miÞÞ and li :¼ Ei=ð2ð1þ miÞÞ with Young’s modulus Ei > 0 and
the Poisson ratio mi 2 ð0; 0:5Þ. The bulk modulus is given by
Ki :¼ ki þ 2

d l
i. Moreover, trð�Þ denotes the trace operator and Id

the identity tensor in Rd. h0 is a reference temperature at which
the bodies are stress free, and the factor ai denotes the thermal
expansion coefficient of the material of body Xi. We remark that
the relation between the relative temperature hi � h0 and the stress
is given by the stress–temperature tensor, which reduces to dKiaiId,
due to the assumed isotropy.

In addition, we have to consider the heat conduction equation
which results from the first law of thermodynamics:

ci
h
_hi ¼ �Hi � divðqiÞ þ ri in Xi � ð0; TÞ ð2:3Þ

with the specific heat capacity ci
h of the body Xi. The term Hi de-

notes the heating from the Joule effect, and the prescribed heat
source term is given by ri. Following [17], we get for linearized ther-
mo-elasticity:

Hi :¼ daiKih0divð _uiÞ: ð2:4Þ

Due to the classical Fourier’s law, the heat flux is given by

qi ¼ �jirhi ð2:5Þ

with the thermal conductivity ji > 0. We remark that in a more
general setting, ji is a tensor which is positive semi-definite as a
consequence of the second law of thermodynamics.

To formulate the initial boundary value problem, we divide the
boundary in the reference configuration Ci :¼ @Xi of the domain Xi

into three nonoverlapping open subsets Ci
D;C

i
N and Ci

c with
Ci

D [ Ci
N [ Ci

c ¼ Ci. In addition, we have two subsets Ci
h and Ci

q such
that Ci

h [ Ci
q ¼ Ci

D [ Ci
N and Ci

h \ Ci
q ¼ ;. Defining the linear stress

tensor ri :¼ kitrðeiÞIdþ 2liei, we summarize (2.1)–(2.5) and formu-
late the initial boundary value problem

.i €ui � DivðriÞ þ dKiairhi ¼ f i in Xi � ð0; TÞ; ð2:6aÞ
ci

h
_hi þ daiKih0divð _uiÞ � divðjirhiÞ ¼ ri in Xi � ð0; TÞ; ð2:6bÞ

where we assume h0 to be constant on Xs [Xm. As initial conditions,
we set

uiðx;0Þ ¼ 0 in Xi;

_uiðx;0Þ ¼ v i
0ðxÞ in Xi;

hiðx; 0Þ ¼ hi
0ðxÞ in Xi;

ð2:7Þ

where v i
0ðxÞ denotes the initial velocity of the body Xi and hi

0ðxÞ its
initial temperature. To obtain a well defined system, we have to
specify suitable boundary conditions for the displacement and the
temperature

ui ¼ ui
D on Ci

D � ð0; TÞ;
Pini

0 ¼ ti
N on Ci

N � ð0; TÞ;
hi ¼ hi

D on Ci
h � ð0; TÞ;

qini
0 ¼ qi

N on Ci
q � ð0; TÞ;

ð2:8Þ

where ni
0 denotes the outward unit normal vector in the reference

configuration on Ci. To define the interface conditions on the possi-
ble contact boundary Ci

c , we follow [13,12] and start with introduc-
ing for each point x 2 Cs

c the normal vector to the current
configuration n :¼ ns. A predefined relation between the points of
the possible contact zones Ci

c is constructed by a smooth mapping
RtðxÞ : Cs

c ! Cm
c satisfying RtðCs

cÞ � Cm
c for all t 2 ð0; TÞ. The current

position usðx; tÞ :¼ xþ usðx; tÞ 2 Cs
c;t of the reference point x 2 Cs

c is
projected onto the current master boundary Cm

c;t in the direction
of the current normal nðx; tÞ; the reference point corresponding to
the projection umðRtðxÞ; tÞ 2 Cm

c;t defines RtðxÞ. We assume that this
mapping is well defined. Denoting the current gap at a point
x 2 Cs

c by

gðx; tÞ :¼ ðusðx; tÞ � umðRtðxÞ; tÞÞnðx; tÞ; ð2:9Þ

the contact conditions on Cs
c reads

gðx; tÞ 6 0; pnðx; tÞP 0; gðx; tÞpnðx; tÞ ¼ 0 ð2:10Þ

for all t 2 ð0; TÞ, where the normal part of the contact stress is given
by pn :¼ pcn for the total contact stress pc :¼ �Psns

0. For the action–
reaction principle, we have to satisfy for all t 2 ð0; TÞ the condition

pc ¼ �Psðx; tÞns
0 ¼ PmðRtðxÞ; tÞnm

0 on Cs
c: ð2:11Þ

We note that this equality is restricted to the linear theory, other-
wise the Jacobian of Rtð�Þ has to be taken into account. Using the
normal component pn of the contact stress pc , we define its tangen-
tial part by ps :¼ pc � pnn. Furthermore, we introduce the relative
displacement along the possible contact boundary

½uðx; tÞ� :¼ usðx; tÞ � umðRtðxÞ; tÞ for ðx; tÞ 2 Cs
c � ð0; TÞ ð2:12Þ

and split it into normal part ½u�n :¼ ½u�n and tangential part
½u�s :¼ ½u� � ½u�nn. Defining the maximal temperature of the two
contact interfaces

�hcðx; tÞ :¼maxfhsðx; tÞ; hmðRtðxÞ; tÞg for ðx; tÞ 2 Cs
c � ð0; TÞ

ð2:13Þ

and using the Euclidean norm k � k, we can formulate Coulomb’s
friction law as

kpsk 6 Fð�hcÞjpnj;
kpsk < Fð�hcÞjpnj ) ½ _u�s ¼ 0;

kpsk ¼ Fð�hcÞjpnj ) 9b : ps ¼ b2½ _u�s;

8><>: on Cs
c � ð0; TÞ; ð2:14Þ

where the following temperature dependent coefficient of friction
Fð�hcÞP 0 is used:

Fð�hcÞ :¼ F0
ð�hc � hdamÞ2

ðhdam � hrefÞ2
: ð2:15Þ

In this definition, F0 is the static coefficient of friction at the given
reference temperature href , and hdam is a damage temperature on the
interface. Typically, hdam is related to the temperature at which fric-
tional stress is no longer due to solid shearing effects but is gener-
ated by viscous shear of a molten film on the contact interface. It
can be taken as the lowest melting temperature of the two bodies
in contact, see [12]. Since �hc < hdam, we have F0ð�hcÞ 6 0 and
lim�hc!hdam

Fð�hcÞ ¼ 0. Therefore, (2.15) shows a thermal softening
effect.

The conditions for the heat flux qi
c :¼ qini across the possible

contact interface Ci
c can be written as
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