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a b s t r a c t 

A Direct Numerical Simulation (DNS) study of an axisymmetric turbulent wake generated by a square 

plate placed normal to the incoming flow is presented. It is shown that the new axisymmetric turbulent 

wake scalings obtained recently for a fractal-like wake generator (Dairay et al., 2015), specifically a plate 

with irregular multiscale periphery placed normal to the incoming flow, are also present in an axisym- 

metric turbulent wake generated by a regular square plate. These new scalings are therefore not caused 

by the multiscale nature of the wake generator but have more general validity. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Axisymmetric turbulent wakes have been extensively studied 

experimentally and numerically (see for example Johansson et al., 

2003 ). A problem of particular interest remains however the 

prediction of the scaling laws for the wake’s width δ and the 

centreline velocity deficit u 0 along the streamwise distance x . 

For the turbulent axisymmetric and self-preserving wake, these 

scalings laws can be derived from knowledge of the dissipation 

rate ε scalings ( Townsend, 1976; George, 1989 ). In a recent study, 

Nedi ́c et al. (2013) proposed an extension of the theory established 

in George (1989) assuming the non-equilibrium dissipation scaling 

(see Vassilicos, 2015 , for details) 

ε = C ε
K 

3 / 2 

δ
with C ε ∼ Re m 

G /Re m 

l 
(1) 

where K is the turbulent kinetic energy, Re G is a global Reynolds 

number determined by the inlet conditions and Re l is a local 

Reynolds number based on local velocity and length scales. This 

theory has recently been tested in detail and revised by Dairay 

et al. (2015) . Invoking an assumption of constant anisotropy, 

Dairay et al. (2015) have shown that it is possible to derive scaling 

laws for u 0 and δ for any values of the exponent m in (1) (this as- 

sumption actually replaces the usual assumption of self-similarity 

of every single term of the turbulent kinetic energy equation 

which turns out to be incorrect for some of the terms). They 

obtain δ(x ) /θ = B ((x − x 0 ) /θ ) β and, u 0 (x ) /U ∞ 

= A ((x − x 0 ) /θ ) α
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where θ is the momentum thickness, U ∞ 

is the freestream ve- 

locity, x 0 is a virtual origin, β = (1 + m ) / (3 + m ) , α = −2 β = 

−2(1 + m ) / (3 + m ) , B ∼ (L b /θ ) 
2 m 

3+ m and A = B −2 . In Dairay et al. 

(2015) , these predictions have been found to be in agreement with 

both numerical and experimental data for an axisymmetric turbu- 

lent wake generated by an irregular plate. The aim of this paper 

is to use DNS data to interrogate the existence of the new non- 

equilibrium dissipation law (1) and its wake-law consequences in 

a more “conventional” turbulent wake generated by a square plate. 

2. Flow configuration and numerical methods 

In the present study, a turbulent wake is generated by a square 

plate of surface area A placed normal to the incoming flow (see 

Fig. 1 for illustration). The surface area of the square plate is the 

same as the one of the irregular plate used in Dairay et al. (2015) . 

In the Cartesian coordinate system ( O ; x, y, z ), the domain is 

� = [ −x p , L x − x p ] × [ −L y / 2 , L y / 2] × [ −L z / 2 , L z / 2] where x p = 10 L b 
is the longitudinal location of the plate, the origin O is located 

at the centre of the plate and L x × L y × L z = 120 L b × 15 L b × 15 L b 
where L b = 

√ 

A is the reference length of the flow (see Fig. 1 ). For 

the sake of simplicity the radial distance r = 

√ 

y 2 + z 2 and the 

polar angle ϕ = arctan (y/z) are also introduced hereinafter. 

Mean quantities < f > ( x, r ) of a field f ( x, r , ϕ, t ) are estimated 

by averaging over time and over the homogeneous polar direction 

ϕ in the cylindrical coordinate system ( x, r , ϕ). The mean stream- 

wise velocity component < u x > ( x, r ) is denoted U . The momen- 

tum thickness θ is defined by θ2 = (1 /U 

2 ∞ 

) 
∫ ∞ 

0 U ∞ 

(U ∞ 

− U) rdr = 

const. and the wake’s width is here characterised by the inte- 

gral wake’s width δ, with δ2 (x ) = (1 /u 0 ) 
∫ ∞ 

0 (U ∞ 

− U) rdr where 

u 0 (x ) = U ∞ 

− U(x, r/L b = 0) is the centreline velocity deficit. The 
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Fig. 1. Schematic view of the computational domain. 

Fig. 2. Streamwise evolution of the ratio 	x / η. The Kolmogorov microscale η has 

been computed on the basis of the maximum value of ε( x, r ) along r . 

global Reynolds number Re G based on the reference length L b 
and the freestream velocity U ∞ 

is Re G = 50 0 0 . The local Reynolds 

number Re l is defined by Re l (x ) = 

√ 

K 0 (x ) δ(x ) /ν where K 0 is the 

turbulent kinetic energy at a centreline location. 

The finite difference code Incompact3d ( Laizet and Lamballais, 

2009; Laizet et al., 2010 ) is used to solve the incompressible 

Navier-Stokes equations. The modelling of the plate is performed 

by an Immersed Boundary Method, following a procedure pro- 

posed by Parnaudeau et al. (2008) . Inflow/outflow boundary 

conditions are assumed in the streamwise direction with a 

uniform fluid velocity U ∞ 

without turbulence as inflow condi- 

tion and a 1D convection equation as outflow condition. The 

boundary conditions in the two spanwise directions are periodic. 

The computational domain is discretized on a Cartesian grid of 

n x × n y × n z = 3841 × 480 × 480 points. In terms of Kolmogorov 

microscale η, as illustrated in Fig. 2 , the spatial resolution is at 

worst 	x = 	y = 	z ≈ 7 η (where the turbulence is at its most 

intense) and at best 	x = 	y = 	z ≈ 0 . 8 η (at the end of the com- 

putational domain where the turbulence has decayed). In the range 

10 ≤ x / L b ≤ 100, which is the range of interest of our study, the 

spatial resolution is always below 4 η. In a recent resolution study, 

Laizet et al. (2015) have shown that a spatial resolution of 7 η or 

5 η is sufficient to reproduce experimental results with an error 

margin of about 10% or 5% respectively (for one-point first and sec- 

ond order statistics). They also showed that quantities such as the 

turbulence dissipation rate require a resolution of at least 4 η to be 

well captured. For the spatial derivatives, sixth-order centred com- 

pact schemes ( Lele, 1992 ) are used. To control the residual aliasing 

errors, a small amount of numerical dissipation is introduced only 

at scales very close to the grid cutoff. This very targeted regular- 

ization is ensured by the differentiation of the viscous term that 

is sixth-order accurate ( Lamballais et al., 2011 ). The time integra- 

tion is performed using an explicit third-order Adams-Bashforth 

scheme with a time step 	t = 5 × 10 −3 L b /U ∞ 

(corresponding to a 

Fig. 3. Streamwise evolution of the wake width δ/ L b . 

CFL number of 0.16 and ensuring 	t < 0.014 τη where τη is the 

Kolmogorov time-scale). Full details about the code “Incompact3d”

can be found in Laizet and Lamballais (2009) ; Laizet et al. (2010) ; 

Laizet and Li (2011) (see also the link www.incompact3d.com ). 

The collection of data for the turbulent statistics is done over a 

time T = 3850 L b /U ∞ 

, corresponding to approximately 25 seconds 

of the experiments in Nedi ́c et al. (2013) and to 423 cycles based 

on the Strouhal number St = f v s L b /U ∞ 

= 0 . 11 associated with the 

vortex shedding frequency f vs (see Nedi ́c et al., 2013 ). This time 

is also the same as the one used in Dairay et al. (2015) ensuring 

good convergence of the DNS statistics. 

The streamwise evolution of δ is plotted in Fig. 3 . At x = 100 L b 
(the most distant streamwise location that we are considering 

in the present paper), δ ≈ 2.12 L b . This means that the domain 

half-width is L y / 2 = L z / 2 = 7 . 5 L b ≈ 3 . 54 δ at x = 100 L b . According 

to Redford et al. (2012) , the critical value needed to ensure that 

the lateral boundary conditions do not affect the wake devel- 

opment is L z / 2 = L y / 2 ≈ 2 . 95 δ. The lateral dimensions of our 

domain therefore appear sufficiently large to avoid any significant 

contamination from the lateral boundaries even at x = 100 L b . 

The DNS data can first be used to assess the validity of the 

local isotropy assumption commonly used in the experimen- 

tal framework. In Fig. 4 we compare ε iso = 15 ν〈 (∂ u ′ x /∂ x ) 2 〉 
with the actual dissipation rate ε f ull = 2 ν〈 s i j s i j 〉 where 

s i j = (1 / 2)(∂ u ′ 
i 
/∂ x j + ∂ u ′ 

j 
/∂ x i ) . It is clear from Fig. 4 (right) that 

ε iso / ε full lies between 0.96 and 1.04 in the range 10 ≤ x / L b ≤ 100. 

3. Axisymmetry of wake statistics 

A quantitative evaluation of the statistical axisymmetry of 

the flow generated by the square plate can been obtained 

by computing the mean values of the coefficient of variance 

c v (x, r) ≡ 100 
√ 

(1 /N ϕ ) 
∑ 

ϕ (S(x, r, ϕ) − 〈 S〉 (x, r)) 2 / 〈 S〉 (x, r) where 

N ϕ is the number of polar angles and S stands for mean flow, 

turbulent kinetic energy or dissipation rate of turbulent kinetic en- 

ergy. The streamwise variations of the radially averaged coefficient 

of variance c v (x ) ≡ (1 /N r ) 
∑ 

r c v (x, r) are plotted in Fig. 5 while 

the irregular plate data of Dairay et al. (2015) are added for com- 

parison. Fig. 5 shows that, at x = 10 L b , there is already less than 

4% variation in all statistics demonstrating the good axisymmetry 

of the flow generated by the square plate at x > 10 L b . 

4. Similarity of the axisymmetric turbulent wakes 

The axisymmetry of the flow generated by the square plate has 

been carefully checked. The next step of the analysis is to inves- 

tigate the similarity properties of mean flow statistics. Self-similar 
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