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a b s t r a c t 

The motion of a finite-size particle in steady two-dimensional lid- and shear-driven square-cavity flows is 

investigated. The coupled equations are solved numerically using a discontinuous Galerkin-finite-element 

method (DG-FEM) combined with the so-called smoothed-profile method (SPM). The spectral conver- 

gence enables an accurate and efficient computation of particle trajectories without moving grids. Parti- 

cle trajectories are obtained by solving the Navier–Stokes and Newtons’s equations for the particle motion 

using simulations without additional model assumptions fully resolving all scales down to the flow in the 

lubrication gap. Particle trajectories are compared with streamlines and trajectories from one-way cou- 

pling. In the shear-driven square cavity with convex streamlines finite-size particles suffer a significant 

displacement effect when passing the moving boundary closely. While inertia displaces the particle to- 

wards outer streamlines, the finite-size effect alone displaces the particle towards inner streamlines. For 

weakly inertial particles the latter displacement effect is shown to be qualitatively similar to the dis- 

placement modelled by inelastic collision in a one-way-coupling approach. 

© 2016 Published by Elsevier Inc. 

1. Introduction 

Two-phase flows arise in many natural phenomena and are of 

great interest for industrial processes ( Crowe et al., 2011 ). There- 

fore, it is of crucial importance to understand the basic mecha- 

nisms involved in such flows in order to predict and control their 

behaviour. 

Among multiphase flows, particle-laden flows are made of a 

connected fluid phase and an immiscible dispersed phase consist- 

ing of particles. Typically, the particles are very small compared 

to the reference length of the fluid domain in which they are im- 

mersed. If, in addition, liquid volume displaced by the particulate 

phase is small, i.e. the particle volume fraction is φ < 0.001, the 

particles can be considered point particles ( Crowe et al., 2011 ). In 

addition, some models also neglect the feedback of the (point) par- 

ticles on the fluid flow which significantly simplifies the numerical 

treatment. The assumption of point particles which do not affect 

the fluid motion leads to a one-way coupling between the fluid 

and the particle phase. However, the one-way-coupling approxi- 

mation must necessarily break down if a particle moves close to 

a boundary of the domain (a wall or a free-surface) within a dis- 

tance of the order of the particle size. Thus, near the boundaries 
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the finite particle size can play an important role in the evolution 

of the particulate phase. 

An example in which the motion near a free surface plays a 

crucial role is the rapid clustering of particles into so-called par- 

ticle accumulation structures (PAS) ( Schwabe et al., 1996; 2007 ). 

Since the particle accumulation also takes place in very dilute sus- 

pensions ( Tanaka et al., 2006 ), the numerical modeling to date 

was based on the hypothesis that the particle accumulation is 

a single-particle phenomenon such that particle–particle interac- 

tions have been neglected. However, as demonstrated by Hofmann 

and Kuhlmann (2011) and Mukin and Kuhlmann (2013) , particle–

boundary interactions cannot be neglected. In fact, the particle–

boundary interaction was shown to be of crucial importance for 

PAS. To model this interaction ( Hofmann and Kuhlmann, 2011 ) 

have suggested an inelastic collision model, also called particle–

free-surface interaction (PSI) model ( Mukin and Kuhlmann, 2013 ), 

which is based on a single interaction-length parameter. Even 

though the PSI model can semi-quantitatively predict the shape 

of PAS in its final time-asymptotic state, the model cannot cor- 

rectly describe the temporal evolution of the accumulation process. 

Obviously, this deficit is due to the discontinuous ad-hoc assump- 

tions entering the PSI model. Moreover, employing the PSI model 

along with an inappropriate interaction-length parameter may fake 

a particle-accumulation which does not physically exist in corre- 

sponding experiments. 
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While the PSI model is computationally very efficient, it is not 

based on first principles and it is lacking in several respects. On the 

other hand, a fully-resolved approach without any further model- 

ing is feasible for a single particle phenomenon. The fully-resolved 

simulation would enable (a) a prediction of the dynamical evolu- 

tion of the attraction of a single particle to a limit cycle (PAS), (b) a 

numerical proof or disproof of the existence of PAS for specific flow 

conditions, and (c) it would yield the correct interaction-length pa- 

rameter to be used in the computationally more economic one- 

way coupling approach. 

The aim of the present investigation, therefore, is to remedy 

the inconsistency of the one-way-coupling approach in combina- 

tion with the PSI model by accurately investigating the effect of 

tangentially moving walls and free-surfaces on the trajectories of 

finite-size particles immersed in an incompressible fluid flow. The 

flow systems targeted are relevant for PAS, because the streamline 

crowding near the moving boundaries significantly enhances the 

probability and thus the importance of particle–boundary interac- 

tions. 

Several two- and four-way coupled simulations have been 

carried out employing rebound schemes to deal with particle–

boundary and particle–particle interactions (see e.g., Ardekani and 

Rangel (2008) ). Here, we go a step further and directly simulate 

the particle–boundary interaction, based only on the Navier–Stokes 

equations and Newton’s law without any further modeling. To that 

end the flow will be fully resolved on all relevant scales, including 

the lubrication flow in the thin gap between the particle and the 

boundary. This direct approach makes rebound models dispens- 

able. 

The problem is mathematically formulated in Section 2 . 

Section 3 describes the discretization method using DG-FEM and 

SPM, including some benchmarks to verify the correct implemen- 

tation of the numerical solver. Section 4 gathers the results of 

a parametric investigation. The effect of inertia and of an initial 

velocity-mismatch on the particle–wall and particle–free-surface 

interactions are presented. The results are then compared with 

those of the discontinuous PSI model ( Hofmann and Kuhlmann, 

2011; Kuhlmann and Hofmann, 2011 ). Finally, in Section 5 , conclu- 

sions will be drawn and perspectives for future investigations are 

outlined. 

2. Formulation of the problem 

We consider the transport of solid particles in an incompress- 

ible Newtonian fluid. For simplicity we neglect buoyancy forces. 

The governing equations are the Navier–Stokes equations valid in 

the fluid phase 

∇ · u = 0 , (1a) 

∂u 

∂t 
+ u · ∇u = − 1 

ρf 

∇p + ν∇ 

2 u , (1b) 

∂T 

∂t 
+ u · ∇ T = κ∇ 

2 T , (1c) 

and Newton’s equations of motion for the i th particle moving in 

the fluid 

F i = M i 
˙ V i , (2a) 

R i = I i · ˙ �i , (2b) 

where ρf is the fluid density, u , p and T are the flow velocity, 

pressure and temperature field, respectively, ν is the kinematic 

viscosity, κ the thermal diffusivity, and F , R , V , �, M and I are 

the particles forces, torques, translational and rotational veloci- 

ties, mass and inertia tensor, respectively. The coupling between 

the two phases results from the no-slip condition on the particle 

surfaces. 

While the equations of motion have been presented in 

a dimensional form, the flow simulation employs a non- 

dimensionalization. Since we shall consider the pure mechanical 

lid-driven cavity and also a thermocapillary-driven cavity we ap- 

ply different scalings depending on the particular case. For the lid- 

driven cavity we use the convective scaling 

u = 

ˆ u U, x = 

ˆ x L, t = 

ˆ t 
L 

U 

, p = 

ˆ p ρf U 

2 , (3) 

where U is the velocity of the lid, L a characteristic length, and 

the superscript ˆ indicates non-dimensional quantities. For the 

thermocapillary-driven cavity we use the viscous scaling 

u = 

ˆ u 

ν

L 
, x = 

ˆ x L, t = 

ˆ t 
L 2 

ν
, p = 

ˆ p 
ρf ν

2 

L 2 
, T = 

ˆ T �T , (4) 

where �T is a characteristic temperature difference. 

3. Numerical methods and code validation 

The numerical treatment of two-phase problems can be roughly 

classified into two main categories. In the Lagrangian description 

of the particle motion a computational mesh is co-moving with 

the particle (e.g. the arbitrary Lagrangian-Eulerian (ALE) method 

( Duarte et al., 2004 )). In the Eulerian representation of the parti- 

cle motion all governing equations are solved on a stationary grid 

(distributed Lagrange multiplier, DLM, force coupling method, FCM, 

immersed boundary method, IMB and immersed interface method, 

IIM, see e.g. Lomholt and Maxey (2003) and Peskin (2002) ). 

In the present investigation, an Eulerian approach is adopted 

implementing a smoothed-profile method (SPM). It includes the ef- 

fect of the particles on the flow in a smooth body-force fashion 

instead of explicitly enforcing the no-slip boundary condition on 

the particles’ surfaces. The computational grid for the flow simu- 

lation covers both phases. In order to include the influence of the 

particulate-phase on the flow field a smooth body force is added to 

the momentum Eq. (1) b. Such a body-force is defined via a thin in- 

terface layer across each particle surface which is used to smoothly 

pass from fluid-dynamics to rigid-body equations of motion. 

To calculate the velocities of the particles we use the penalty- 

body-force approach as discussed in Luo et al. (2009) and 

Nakayama and Yamamoto (2005) . This method guarantees the 

rigidity of the particle and implicitly applies the no-slip boundary 

condition responsible for coupling the two-phases. To distinguish 

between the solid domain of particle i and the surrounding fluid 

domain we use the concentration function 

φi (x , t) = 

1 

2 

[
tanh 

(
a i − | x − P i | 

ξi 

)
+ 1 

]
, (5) 

where P i and ξ i are, respectively, the centroid position and the 

interface thickness of the i th particle and a i is the radius of the 

particle assumed to be circular (in 2D) or spherical (in 3D). The 

function φ is called the smoothed profile and equals to one in- 

side the particles, whereas it is zero in the fluid phase. For tem- 

poral discretization the second-order stiffly-stable splitting scheme 

of Karniadakis et al. (1991) is employed, including a semi-implicit 

treatment of the particle-phase. For the spatial discretization we 

use a discrete-Galerkin finite-element method (DG–FEM). Within 

this approach the algorithm used for simulating the particle-laden 

flow (1) and (2) reads (see Luo et al., 2009 for details) 

P n +1 
i 

= P n i + �t 

K ∑ 

k =0 

a k V 

n −k 
i 

, (6a) 

δ0 ̃  u − α0 u 

n − α1 u 

n −1 

�t 
= −β0 N(u 

n , u 

n ) − β1 N(u 

n −1 , u 

n −1 ) , (6b) 
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