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a b s t r a c t 

An investigation on oscillating characteristic of free surface in a liquid bridge for high Pr number fluids 

under gravity has been conducted numerically. Against the former studies, free surface is treated as a 

deformable surface in the direct numerical simulation (DNS) of liquid bridge by using a mass conserving 

level set method for the first time. The results show that, the moving track of vortex centers appears the 

shape of axisymmetric hook in the stable stage of thermocapillary convection, and the fluctuation of sur- 

face velocity is closely relative to the motion of cell flow toward the center and cold disk. In the process 

of transforming from the stable stage to oscillatory stage, the moving track of vortex centers of cell flow 

shows the asymmetry and step characteristic. The coupling effects of the temperature, velocity and free 

surface oscillations constitute complete mechanism of thermocapillary convection oscillations. The tem- 

perature firstly oscillates at the hot corner, and transfer direction of temperature oscillation is from the 

hot corner to inner. The velocity of surface flow is larger than that of internal flow, and the surface flow 

is supplied by the bulk return flow with the disturbance information of the velocity. The velocity oscilla- 

tion lags behind the temperature oscillation at the hot corner. The closer to the intermediate height, the 

larger amplitudes of temperature and velocity are. The oscillation law of velocity and free surface at the 

intermediate height are the same, and there are two obvious oscillation bifurcations. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The convective motion along a free surface caused by changed 

surface tension is called as Marangoni convection. This change can 

be caused by many reasons, and the parts of them caused by 

temperature are called as thermocapillary convection. During the 

floating zone process for single-crystal, thermocapillary convection 

plays an important role on the quality of crystal material ( Croll 

et al., 1986; Eyer et al., 1985; Schwabe et al., 1981 ). The crys- 

tal growth by zone melting method in microgravity environment 

is considered to be an important method to prepare high quality 

crystal, thus the study on thermocapillary convection in the float- 

ing zone has become one of important topics. Chang and Wilcox 

(1975) proposed a hydrodynamic model of liquid bridges for ther- 

mocapillary convection in the floating zone. This model was used 

for the study on convective characteristics and mechanism inside 

melting zone, not involving phase change process on solid–liquid 

interface. The experiment of thermocapillary convection for liquid 

bridges of half floating zone was conducted by Chun (1980) , and 

Schwabe et al. (1978) , and the oscillatory thermocapillary convec- 
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tion was found in melting zone. Such oscillatory convection brings 

corresponding oscillatory temperature field which relates to the 

growth of striation in the crystal and affects the growth quality of 

crystal. Since 1980, the researches about thermocapillary convec- 

tion have focused on the critical parameters of oscillation, vibra- 

tion mechanism and measures to control the oscillation . 

At present, there have been a lot of numerical simulations 

and theoretical analyses on flow and oscillation mechanism in liq- 

uid bridges for low Pr number fluid ( Hibiya et al., 2008; Leven- 

stam et al., 1995; Bazzi et al., 20 0 0; Davis et al., 2008; Kuhlmann 

et al., 1993 ). While in high Pr number range, the experimental 

and numerical investigations for oscillatory thermocapillary con- 

vection are still not enough ( Montanero et al., 2008 ). Melnikov 

et al. (2014) studied formation of particle accumulation structures 

(PAS) in a supercritical flow driven by the combined effects of 

buoyancy and thermocapillary forces under earth’s gravity. The ac- 

cumulation of particles in coherent structures is possible only in 

a periodic oscillatory flow. Sato et al. (2013) found that an os- 

cillatory flow emerges in the high aspect liquid bridge of 20 cSt 

silicone oil ( Pr = 206.8) with the azimuthal mode number m 

= 1. As increasing the intensity of the thermocapillary effect in 

terms of the Marangoni number Ma, nonlinearity over the free sur- 

face is raised through unique propagations of the hydrothermal 

wave (HTW). The effect of interfacial heat transfer with ambient 
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gas on the onset of oscillatory convection in a liquid bridge of 

large Prandtl number on the ground was systematically investi- 

gated by the method of linear stability analyses ( Xun et al., 2009 ). 

Li et al. (2006) conducted an unsteady three-dimensional numer- 

ical simulation of thermocapillary convection in an encapsulated 

liquid bridge. The experiment was conducted on the sounding 

rocket MAXUS 4 launched from ESRANGE in Kiruna, North-Sweden. 

Schwabe observed the onset of hydrothermal waves for a 2 cSt sil- 

icone oil ( Pr = 28) liquid bridge and to measure their features such 

as the wave phase speed and the angle between the wave vec- 

tor and the applied temperature gradient was reached ( Schwabe, 

2005 ). 

It is difficult to find out accurate and stable analyses or numeri- 

cal simulations on flow structures of high Pr number fluids. Mean- 

while, there are still major disputes on data veracity ( Han et al., 

1996; Rupp et al., 1989 ). The reason is that the majority studies 

adopted the simplified model without taking the environment in- 

fluence and the dynamic surface deformation into account. At the 

same time, existing methods for capturing micro surface migration 

of the liquid bridge cannot meet the resolution requirements of 

surface deformation under gravity ( Wanschura et al., 1995 ). In this 

paper, the DNS of thermocapillary convection in a liquid bridge for 

high Pr number fluid under gravity has been conducted to explore 

the flow pattern in the liquid bridge. The governing equations of 

thermocapillary convection under gravity are given by the non- 

dimensional mass, Navier–Stokes and energy conservation equa- 

tions and solved on a staggered grid. 

2. Physical model and geometric model 

The liquid bridge with radius R and height H is suspended be- 

tween two coaxial disks and surrounded by the air in a rectangular 

container with height H and width 4 R as shown in Fig. 3 . The tem- 

perature difference between the two disks is �T = T t −T b , where 

T t and T b are the temperature of the upper and bottom disks, re- 

spectively. The general governing equations of the problem under 

gravity are given by the following non-dimensional mass, Navier–

Stokes and energy conservation equations. 

u t + (u · ∇) u = g u + (−∇p + ∇ · (2 μD ) / Re 

+ ( 1 − Ca θ ) κδ(d) n / W e ) /ρ. (1) 

∇ · u = 0 . (2) 

∂θ/ ∂t + ∇ · ( u θ ) = ∇ 

2 θ/ Ma . (3) 

where u = ( u, v ) is the fluid velocity, u ( u = u s /U ) and v ( v = v s /U ) 

are dimensionless transverse and vertical velocity, respectively, U 

(| σ ′ 
T | �T / μ) is characteristic velocity, where �T is temperature dif- 

ference ( �T = T t − T b ), θ is dimensionless temperature and we 

take θ = ( T − T b )/( T t − T b ), ρ = ρ ( x ,t) is the fluid density, μ
= μ ( x ,t) is the fluid viscosity, D is the viscous stress tensor, κ is 

the curvature of the interface, d is the normal distance to the in- 

terface, δ is the Dirac delta function, n is the unit normal vector 

at the interface, t is the dimensionless time, we denote t = t s U / ̄L , 

where t s is dimensional time, L is the characteristic length and we 

take L = 2 R . In addition, x and y are dimensionless coordinates. We 

denote x = X/ ̄L and y = Y/ ̄L . The surface tension coefficient is con- 

sidered to be a linearly function of temperature and defined as σ
= σ c − σ T ( T − T b ), where σ c is a reference value of surface ten- 

sion and σ T is the temperature coefficient of surface tension. We 

denote σ ′ 
T = ∂σ/ ∂T , and T is the temperature. 

The key parameters are ρg / ρ l and μg / μl , the dimensionless 

density and viscosity ratio, respectively. ρ l and μl are the di- 

mensional density and viscosity of the liquid bridge, respectively, 

while ρg and μg are the dimensional density and viscosity of 

the ambient air, respectively. Re = ρl U ∞ 

L / μl , Reynolds number, 

W e = ρl U 

2 ∞ 

L /σ , Weber number, Pr = μl / ρ l α, Prandtl number, Ca 

= μl U ∞ 

/ σ , Capillary number, Ma = σT �T L / μl a = ReP r , Marangoni 

number, θ = ( T − T b )/ �T , excess temperature, α is the thermal 

diffusivity, and g u represents a unit gravitational force. The relative 

importance of buoyancy and thermocapillary effects is determined 

by Bond number, B = ρgβ L̄ 2 / σT , β is the coefficient of thermal ex- 

pansion. 

The outer boundary for air region would be satisfied: 

θ = 0 (y = 0) , (4) 

θ = 1 . 0 (y = 0 . 5) . (5) 

In the two phase system studied here, the initially stationary 

liquid bridge was considered with the initial velocity for both liq- 

uid bridge and ambient air, 

u (t = 0) = 0 . (6) 

The non-slip condition was used for all walls of the computa- 

tional domain, 

u = 0 . (7) 

The level set method was originally introduced by Osher and 

Sethian (1988) to numerically predict the moving interface �(t) be- 

tween two fluids. Instead of explicitly tracking the interface, the 

level set method implicitly captures the interface by introducing a 

smooth signed distance from the interface in the entire computa- 

tional domain. The level set function φ( x ,t) is taken to be positive 

outside the liquid bridge, zero on the interface and negative inside 

the liquid bridge. The interface motion is predicted by solving the 

following convection equation for the level set function of φ( x ,t) 

given by: 

φt + u · ∇φ = 0 , (8) 

u · ∇φ = (uφ) x + (v φ) y , (9) 

(uφ) x + (v φ) y = ( u i +1 / 2 , j + u i −1 / 2 , j )( φi +1 / 2 , j − φi −1 / 2 , j ) / (2 h ) 

+ ( φi +1 / 2 , j + φi −1 / 2 , j )( u i +1 / 2 , j − u i −1 / 2 , j ) / (2 h ) 

+ ( v i, j+1 / 2 + v i, j−1 / 2 )( φi, j+1 / 2 − φi, j−1 / 2 ) / (2 h ) 

+ ( φi, j+1 / 2 + φi, j−1 / 2 )( v i, j+1 / 2 − v i, j−1 / 2 ) / (2 h ) . 

(10) 

For smooth data, we have ( φi +1 / 2 , j + φi −1 / 2 , j ) ≈ ( φi, j+1 / 2 + 

φi, j−1 / 2 ) . In addition, we have ( u i +1 / 2 , j − u i −1 / 2 , j ) ≈ ( v i, j+1 / 2 −
v i, j−1 / 2 ) because u is numerically divergence free. 

Thus, 

(uφ) x + (v φ) y ≈ ( u i +1 / 2 , j + u i −1 / 2 , j )( φi +1 / 2 , j − φi −1 / 2 , j ) / (2 h ) 

+ ( v i, j+1 / 2 + v i, j−1 / 2 )( φi, j+1 / 2 − φi, j−1 / 2 ) / (2 h ) , 

(11) 

For computing u i +1 / 2 , j (similarly for u i, j+1 / 2 , φi +1 / 2 , j ,…), a 

second-order ENO scheme is used as follows: 

Define 

m (a, b) ≡
{

a if | a | ≤ | b | 
b otherwise 

. (12) 

Let 

u L ≡ u i, j + m ( u i +1 , j − u i, j , u i, j − u i −1 , j ) / 2 , (13) 

u R ≡ u i +1 , j − m ( u i +2 , j − u i +1 , j , u i +1 , j − u i, j ) / 2 , (14) 

u M 

≡ ( u L + u R ) / 2 . (15) 

Please cite this article as: S. Yang et al., Oscillating characteristic of free surface from stability to instability of 

thermocapillary convection with high Prandtl number fluids, International Journal of Heat and Fluid Flow (2016), 

http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.05.001 

http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.05.001


Download English Version:

https://daneshyari.com/en/article/4993338

Download Persian Version:

https://daneshyari.com/article/4993338

Daneshyari.com

https://daneshyari.com/en/article/4993338
https://daneshyari.com/article/4993338
https://daneshyari.com

