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a b s t r a c t

The standard approach for goal oriented error estimation and adaptivity uses an error representation via
an adjoint problem, based on the linear functional output representing the quantity of interest. For the
assessment of the error in the approximation of the wave number for the Helmholtz problem (also
referred to as dispersion or pollution error), this strategy cannot be applied. This is because there is no
linear extractor producing the wave number from the solution of the acoustic problem. Moreover, in this
context, the error assessment paradigm is reverted in the sense that the exact value of the wave number,
j, is known (it is part of the problem data) and the effort produced in the error assessment technique
aims at obtaining the numerical wave number, jH , as a postprocess of the numerical solution, uH . The
strategy introduced in this paper is based on the ideas used in the a priori analysis. A modified equation
corresponding to a modified wave number jm is introduced. Then, the value of jm such that the modified
problem better accommodates the numerical solution uH is taken as the estimate of the numerical wave
number jH . Thus, both global and local versions of the error estimator are proposed. The obtained esti-
mates of the dispersion error match the a priori predicted dispersion error and, in academical examples,
the actual values of the error in the wave number.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of acoustic problems requires an
accurate answer to properly predict their performance. In the
low frequency range domain the finite element method (FEM) is
a standard tool for solving the acoustic equations. In the medium
and high frequency ranges the end-user should be concerned by
the errors associated with the numerical discretization. In practice,
two components of the error are clearly identified in this frame-
work: interpolation error and pollution error. The classical interpo-
lation error decays with the mesh size as predicted by standard a
priori error estimates. The behavior of the pollution error is more
complex: the convergence rate predicted by the a priori estimates
depends on the range where the mesh size lies (relative to the
wavelength) [1].

In practice, the end-user of a finite element acoustic computa-
tion is concerned with the accuracy of the solution in terms of

the dispersion, the error committed in the evaluation of the wave
number, j. Paradoxically, this is not because the value of j is a
quantity of interest that has to be evaluated accurately. In fact,
the exact value of j is known a priori as part of the problem data.
The overall quality of the numerical solution is however associated
with the error in the approximation of j.

The standard approach for goal oriented error estimation and
adaptivity is based on the representation of the error in a quantity
of interest obtained using an adjoint problem [14,17]. The solution
of the adjoint problem is also denoted extractor and the corre-
sponding error representation combines the extractor and the
original solution. Thus, the error assessment for the quantity of
interest is reduced to assess the error in energy norm of this auxil-
iary problem. This strategy cannot be used when the quantity to be
assessed is the wave number. This is because there is not a proper
extractor associated with this quantity, j. Moreover, as already
noted, the exact value of j is a priori known. This reverts the final
goal of the error assessment technique. The target of the error esti-
mation strategies is in standard cases to find a better approximation
than the one provided by the numerical solution, uH , and then com-
pare them. In the present situation, this is somehow reverted to find
the actual approximation of the quantity of interest provided by uH ,
say jH , and to compare it with the exact value j. Summarizing,
assessing the error in j requires a complete different paradigm.
The quality of the solution is assessed via the approximation of a
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quantity which is exactly known. The numerical wave number jH is
unknown and has to be evaluated.

The first problem to face is to find a proper definition for jH .
Heuristically, the wavelength of the approximate solution is the
distance of two consecutive local maxima (or minima). Although
this represents a precise definition for 1D waves, it cannot be easily
generalized to higher dimensions. Moreover, it cannot be con-
verted into an explicit functional output of the numerical solution.
One definition for jH is implicitly used in a priori analysis, based on
the idea of fitting the numerical solution into a modified equation.
Here, this concept is extended such that it can be exploited in a
posteriori error assessment setting.

Namely, this paper introduces a technique to assess the value of
jH based on finding the wave number of a modified problem which
better accommodates the numerical solution uH . This approach is
inspired by the a priori estimates developed in [12].

The idea is also extended to find a local indicator of the error in
the wavelength. This local quantity is assumed to measure the abil-
ity of the local discretization (in a given portion of the domain) to
properly capture the wavelength. The possible use of this informa-
tion to adapt the mesh and reduce the overall error is beyond the
scope of this paper but is part of the work in progress.

The remainder of the paper is structured as follows. Section 2
introduces the notation presenting the problem to be solved, the
finite element formulation and the concepts of dispersion and pol-
lution effect in this type of problem. The basic lines of the a priori
analysis performed in [12] are briefly sketched in Section 3. Then,
Section 4 is devoted to introduce the a posteriori technique pro-
posed to assess the error in the wave number. A local version of
the estimate providing a spatial error distribution for adaptive pur-
poses is introduced in Section 5. Finally, Section 6 contains numer-
ical examples showing the good behavior of the proposed
technique both in academic and practical examples.

2. Problem statement

2.1. Acoustic modeling: the Helmholtz equation

The presentation and notation introduced by Ihlenburg [11] is
followed in the remainder of this section.

The transient acoustic problem consists in obtaining the un-
known pressure field P(x, t), taking values for x 2 X � Rd (d being
the dimension in space, d = 1, 2 or 3). The field P(x, t) is the solution
of the following partial differential equation:

DP ¼ 1
c2

@2P
@t2 ; ð1Þ

where c is the speed of sound in the medium.
The pressure time dependency is eliminated assuming a har-

monic behavior and selecting an angular frequency x, namely

Pðx; tÞ ¼ uðxÞ expðixtÞ; ð2Þ

where u(x) is the complex spatial distribution of the acoustic pres-
sure and i the imaginary unit. Substituting (2) into (1), the wave
equation reduces to the Helmholtz equation:

Duþ j2u ¼ 0; ð3Þ

where j :¼ x=c stands for the wave number.
The physical pressure is the real part of the complex unknown

u. The velocity v is proportional to the gradient of pressure:

ru ¼ �iqcjv; ð4Þ

where q is the density of the fluid.
A complete definition of the Boundary Value Problem to be

solved requires adding to Eq. (3) a proper set of boundary condi-

tions. For interior acoustic problems, three types of boundary con-
ditions are considered: Dirichlet, Neumann and Robin (or mixed).

The Dirichlet boundary conditions prescribe values of the pres-
sure on part of the boundary, say CD � @X, where u is prescribed to
be equal to a given value �u, that is

u ¼ �u on CD: ð5Þ

On the Neumann part of the boundary CN � @X the normal compo-
nent of the velocity v is prescribed to be equal to �vn, namely

@u
@n
¼ �iqcj�vn on CN : ð6Þ

The prescribed value �vn corresponds to the normal velocity of a
vibrating wall producing the sound that propagates within the
medium.

Finally, on the Robin part of the boundary CR � @X the velocity
is imposed to be proportional to the pressure, that is

@u
@n
¼ �iqcjAnu on CR; ð7Þ

where the coefficient An is the admittance and represents the struc-
tural damping. This type of boundary conditions is associated with
absorbing walls. For An ¼ 0 it coincides with the homogeneous Neu-
mann boundary condition, standing for a perfectly reflecting panel.
For particular case of plane waves, the value An ¼ 1=qc describes a
fully absorbent panel.

In order to get a well posed Boundary Value Problem, the three
parts of the boundary must cover the whole boundary, that is
@X ¼ CD

S
CN
S

CR.
The weak form of the Boundary Value Problem defined by Eqs.

(3), (5)–(7) is readily expressed in its weak form using the corre-
sponding natural functional spaces. The space for the trial func-
tions is U ¼ fu 2 H1ðXÞ;ujCD

¼ �ug while the space for the test
functions is V ¼ fv 2 H1ðXÞ;v jCD

¼ 0g, H1ðXÞ being the standard
Hilbert space of square integrable functions with square integrable
first derivatives.

Thus, the weak form of the problem reads: find u 2 U such that

aðu;vÞ ¼ lðvÞ 8v 2 V ; ð8Þ

where the bilinear and linear forms are defined as follows:

aðu;vÞ :¼
Z

X
ru � r~v dX�

Z
X
j2u~v dXþ

Z
CR

iqcjAnu~v dC and

lðvÞ :¼ �
Z

CN

iqcj�vn ~v dC

and the symbol ~� denotes the complex conjugate.

2.2. Finite element approximation

The discrete counterparts of U and V are the finite element
spaces UH � U and VH � V associated with a mesh of characteristic
element size H. Thus, the discrete finite element solution is the
function uH 2 UH such that

aðuH;vHÞ ¼ lðvHÞ 8vH 2 VH: ð9Þ

The finite element solution uH is expressed in terms of the basis-
functions Nj spanning UH:

uH ¼
Xn

j¼1

Njuj ¼ NuH; ð10Þ

where uj, for j = 1,2, . . . ,n, are the complex nodal values,
N ¼ ½N1;N2; . . . ;Nn� and uT

H ¼ ½u1;u2; . . . ;un�.
The matrix form of (9) reads

ðKH þ iqcjAnCH � k2MHÞuH ¼ �iqcjfH; ð11Þ
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