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a b s t r a c t

A SPH-FDM boundary method is proposed for the analysis of thermal process in homogeneous media
with a discontinuous interface in this study, in which the smoothed particle hydrodynamics (SPH)
method is used in the inner computational domain; and the finite difference method (FDM) is used as
the function approximation near the boundary. This mixed method not only can improve the calculation
accuracy under the first-type boundary conditions (i.e., Dirichlet), but also can convert the second- and
third-type boundary conditions (i.e., Neumann and Robin) into the first-type boundary conditions in solv-
ing heat conduction problems of homogeneous media. As a result, a second-order accuracy can be
achieved in the entire solution domain. The proposed SPH-FDM boundary method is applicable to the
analysis of heat conduction in various media, including the problems with discontinuous interface in
the computational domain and the solidification of materials with a moving phase transition boundary.
Numerical results show that the proposed SPH-FDM boundary method overcomes the difficulties of the
conventional SPH method in dealing with the second- and third-type boundary conditions and has a very
high calculation accuracy.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Smoothed particle hydrodynamics (SPH) is a Lagrangian mesh-
free particle method consisting of two steps of approximation: the
kernel approximation and the particle approximation [1–3]. In the
kernel approximation, the function and its derivatives are repre-
sented as integrations over the support domain; while in the par-
ticle approximation, the support domain is divided into discrete
particles with their own masses, densities, velocities and pressures
[4,5]. SPH was initially developed to solve astrophysical problems
in unbounded domains [6], where the governing equation could
be expressed by the classical Newtonian fluid dynamics. Subse-
quently, this method was also successfully applied in other fields,
such as fluid dynamics and free surface flows [7,8] and non-
Newtonian multiphase flows [9–11].

A major concern in the application of SPH method is the phys-
ical type of boundary conditions (BCs), such as the solid BC, open
BC, inflow/outflow BC and periodic condition [12–14]. Fang et al.
[15] simulated transient viscoelastic free surface flows and intro-
duced the artificial pressure between particles to stabilize the
SPH system avoiding the tensile instability. Ataie-Ashtiani et al.

[16] proposed an incompressible SPH method to simulate free sur-
face incompressible fluid problems. Liu and Liu [17] proposed an
improved SPH method for resolving discontinuous interface of
shock waves in aerodynamics based on the Taylor series expan-
sion. Fourtakas et al. [18] presented a method to impose 2-D solid
wall boundary conditions in SPH, by which arbitrary complex
domains could be readily discretised ensuring approximate zeroth
and first-order consistency. These findings provide an effective
approach for the calculation of SPH boundary problems. Also, the
SPH method is well suited for thermal processes of some compli-
cated surface flows due to its Lagrangian nature [4,19]. Jeong
et al. [19] developed an algorithm for the boundary condition
implementation by decomposing a second order partial differential
equation (PDE) into two first order PDEs, which was applicable to
complex geometries and nanoscale heat transfer. Schwaiger [20]
established a SPH formulation of the Laplacian operator that could
greatly improve the accuracy near free boundaries based on a gra-
dient approximation commonly used in thermal problems. In addi-
tion, Alshaer et al. [21] investigated the SPH modelling of transient
heat transfer in pulsed-laser ablation of aluminiumwhere the laser
was applied directly to the free-surface boundary of a specimen.

It is important to note that the compact support domain can be
truncated by the solution domain boundary in the kernel approxi-
mation. As a consequence, the conventional SPH function may not
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be applicable to the entire solution domain, and a first-order or
even zero-order accuracy can hardly be achieved. Libersky et al.
[22] introduced virtual particles to reflect a symmetrical surface
boundary condition and simulated the dynamic characteristics of
materials in hypervelocity impact. The Corrective Smoothed Parti-
cle Method (CSPM) combining the kernel estimate with the Taylor
series expansion [23] can improve the stability of the conventional
SPH method, and it is of second-order accuracy in the solution
domain and first-order accuracy near the boundary, respectively.
Chen et al., [24] proposed Reproducing Kernel Particle Method
(RKPM) in which the reconstruction of the kernel function made
it possible for the SPH method to achieve high accuracy, albeit at
an increased computational expense to determine the kernel func-
tion for each particle and the risk of singular matrices. Zhang and
Batra [25] proposed Modified Smoothed Particle Hydrodynamics
(MSPH) method to obtain high accuracy. However, this method
requires solving a large set of equations, thereby resulting in an
expensive computational cost. Some virtual particles can be placed
at the boundary to produce a highly repulsive force to the particles
near the boundary, and thus to prevent these particles from
unphysical penetration through the boundary. Randles and Liber-
sky [26] proposed a more general treatment of the boundary con-
ditions by assigning the same boundary value of a field variable to
all virtual particles, and then interpolating smoothly the specified
boundary virtual particle values and the calculated values of the
interior particles. However, this approach was only applicable to
some special problems. Esmaili Sikarudi and Nikseresht [27] pro-
posed an approach to facilitate the implementation of Neumann
and Robin boundary conditions based on the smoothing directional
derivatives and the manipulated Taylor series.

In this study, a SPH-FDM boundary method is proposed for the
analysis of thermal process in homogeneous media with a discon-
tinuous interface, in which SPH is used in the inner computational
domain and finite difference method (FDM) is used in the function
approximation near the boundary. This approach allows for the
achievement of second-order accuracy in the entire solution
domain, and overcomes the difficulties in dealing with the
second-type (Neumann) and the third-type (Robin) boundary con-
ditions. In this preliminary study, the SPH-FDM boundary method
is used to solve heat conduction problems in homogeneous media,
including the problems with discontinuous interface in the compu-
tational domain and the solidification of materials with moving
phase transition boundary. This method should be applicable for
many complex engineering problems such as highly nonlinear
deformation and fluid dynamics.

2. The SPH method and a new boundary treatment

2.1. Particle approximation

In SPH, the field function to be solved can be expressed in an
integral form (kernel approximation), and then discretized into
the summation of series (particle approximation). In this study, it
is illustrated using a one-dimensional function, where the kernel
approximation of f(xi) at xi in the domain is [17,28]

f ðxiÞ ¼
Z
X
f ðxjÞWðxi � xj; hÞdxj ð1Þ

where W(xi-xj, h) is the kernel function, h is the smoothing length of
the kernel function, and X is the integral domain, respectively.

The replacement of the field function at both sides of Eq. (1)
with f0(x) and f00(x) yields the kernel approximation of the first
and the second derivative, respectively. It should be stated that
the effect of boundary terms is neglected in deducing the first
order kernel approximation with an integration by part formula.

In Eq. (1), the mass in the X domain is assumed to be divided into
n particles with a mass of m1, m2, m3, . . . and mn, and a density of
q1, q2, q3, . . . and qn, respectively. Then, the field function for par-
ticle i can be approximated as

f ðxiÞ ¼
Xn
j¼1

f ðxjÞWðxi � xj;hÞmj

qj
ð2Þ

where xi and xj are the coordinate of particle i and j, and mj and qj

are the mass and density of particle j, respectively.
The particle approximation of the first derivative at particle xi

can be obtained based on the antisymmetry of the derivative of
the kernel function:

f 0ðxiÞ ¼
Xn
j¼1

½f ðxjÞ � f ðxiÞ� @Wðxi � xj;hÞ
@xi

mj

qj
ð3Þ

Similarly, the particle approximation of the second derivative at
particle xi is [17,28,29]

f 00ðxiÞ ¼
Xn
j¼1

f ðxjÞ @
2Wðxi � xj; hÞ

@x2i

mj

qj
ð4Þ

However, the particle approximation of the second derivative in
Eq. (4) is sensitive to particle disorder, and thus a confused distri-
bution of particles around particle i can result in very low accuracy.
For those thermal problems of interest in this study, the heat trans-
ferred from particle j to particle i depends only on the distance
between the two particles, which is contrary to the thermodynam-
ics law. Thus, the following equation is used [17,28,29]:

f 00ðxiÞ ¼
Xn
j¼1

2mj

qj

xi � xj
r2ij

½f ðxiÞ � f ðxjÞ� @Wðxi � xj; hÞ
@xi

ð5Þ

In fact, Eq. (5) is the so-called Morris operation for the second
kernel derivative [29]. The selection of the kernel function W(R,
h) is of critical importance for SPH, which can have an effect on
the efficiency and stability of numerical algorithm. Note R = r/h,
where r is the inter particle distance. Various kernel functions were
used such as Gaussian, quadratic, quintic and spline kernel func-
tions [6,17,27,29]. Recently, Ferrand et al. [13] proposed an analyt-
ical formulation for the 2-D and 3-D cases using the Wendland
kernel function. For simplicity, a B-spline function is used here
[4,23,28]:

WðR;hÞ ¼ ad �
2
3 � R2 þ 1

2R
3 0 6 R < 1

1
6 ð2� RÞ3 1 6 R < 2
0 otherwise

8><>: ð6Þ

where ad is the normalized constant, which is 1/h and 15/7ph2 in
one- and two-dimensional spaces, respectively.

2.2. SPH-FDM boundary

A SPH-FDM boundary is proposed in this study, where the func-
tion u(x) near the boundary is expressed in a polynomial form (e.g.,
quadratic function):

uðxÞ ¼ aþ bxþ cx2 ð7Þ
where u is the field variable, and a, b and c are the parameters to be
determined, respectively.

The u(x) for point i (Fig. 1, i = 1, 2, 3, 4 . . .) near the boundary can
be expressed as:

ui ¼ a

uiþ1 ¼ aþ bDxþ cðDxÞ2
uiþ2 ¼ aþ 2bDxþ 4cðDxÞ2

8><>: ð8Þ

where Dx is the point distance.

518 B. Bai et al. / International Journal of Heat and Mass Transfer 117 (2018) 517–526



Download English Version:

https://daneshyari.com/en/article/4993419

Download Persian Version:

https://daneshyari.com/article/4993419

Daneshyari.com

https://daneshyari.com/en/article/4993419
https://daneshyari.com/article/4993419
https://daneshyari.com

