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a b s t r a c t

This paper presents stochastic fracture mechanics analysis of linear-elastic cracked structures subjected
to mixed-mode (modes I and II) loading conditions using fractal finite element method (FFEM). The
method involves FFEM for calculating fracture response characteristics; statistical models of uncertain-
ties in load, material properties, and crack geometry; and the first-order reliability method for predicting
probabilistic fracture response and reliability of cracked structures. The sensitivity of fracture parameters
with respect to crack size, required for probabilistic analysis, is calculated using continuum shape sensi-
tivity analysis. Numerical examples based on mode-I and mixed-mode problems are presented to illus-
trate the proposed method. The results show that the predicted failure probability based on the proposed
formulation of the sensitivity of fracture parameter is accurate in comparison with the Monte Carlo sim-
ulation results. Since all gradients are calculated analytically, reliability analysis of cracks can be per-
formed efficiently using FFEM.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Fracture mechanics theory provides accurate deterministic rela-
tionship between the maximum allowable external loads and
cracked structure parameters: dimensions, material properties,
crack size and location. However, due to uncertainties in some of
these parameters (for instance, crack size and material properties)
a purely deterministic approach provides an incomplete picture of
the reality. Probability theory determines how the uncertainties in
crack size, loads, and material properties, when modeled accu-
rately, affect the integrity of cracked structures. Therefore, a prob-
abilistic approach characterizing statistical uncertainties in loads,
material properties, and geometry and quantifying their impact
on fracture response and integrity of materials and structures
seems to be very helpful for practical engineering. Stochastic frac-
ture mechanics (SFM), which blends the classical fracture mechan-
ics and the probability theory, accounts for both mechanistic and
statistical aspects of the crack-driving force and provides probabi-
listic characteristics of fracture initiation and growth of an existing
crack, real or postulated, in an engineering structure [1].

To date, several methods have been developed or implemented
for estimating statistics of various fracture response and reliability.
Most of these methods are based on linear-elastic fracture mechan-
ics (LEFM) and a finite element method (FEM) that employs the
stress intensity factor (SIF) as the primary crack-driving force [1–
6]. For example, using SIFs from an FEM code, Grigoriu et al. [2]
applied first- and second-order reliability methods (FORM/SORM)

to predict the probability of fracture initiation and a confidence
interval of the direction of crack extension. The method can account
for random loads, material properties, and crack geometry. How-
ever, the randomness in crack geometry is modeled by response
surface metamodel of SIFs as explicit functions of crack geometry.
Similar response surface based methods involving elastic–plastic
fracture mechanics and the J-integral based ductile tearing theory
have also appeared [7–9]. For example, a stochastic model based
on an engineering approximation of the J-integral and FORM/SORM
have been developed by Rahman and co-workers for fracture anal-
ysis of cracked tubular structures [7]. Based on this model, the prob-
ability of fracture initiation and subsequent fracture instability can
be predicted under elastic–plastic conditions. The response surface
approximation used in these SFM analyses significantly reduces the
complexity in calculating the derivatives of the SIF or the J-integral.
Essentially, this presents a primary rationale for successful develop-
ment of FORM/SORM algorithms for probabilistic analysis of
cracked structures. However, the usefulness of response surface
based methods is limited, since they cannot be applied to general
fracture mechanics analysis. Because of the complexity in crack
geometry, external loads, and material behavior, more advanced
computational tools, such as FEM, must be employed to provide
the necessary computational framework for analysis of general
cracked structures. Furthermore, due to various approximations
in response surface metamodels, one needs to evaluate their accu-
racy by comparing with generally more accurate FEM based proba-
bilistic analysis [6].

Recently, methods based on fractal geometry concepts to gener-
ate infinite number of finite elements around the crack tip to cap-
ture the crack tip singularity have been developed or investigated
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to solve LEFM problems [10–14]. The fractal finite element method
(FFEM) is one such method developed for calculating the SIFs in
linear-elastic crack problems. Since its origin, it has been success-
fully applied to solve many kinds of crack problems under mode-I
and mixed mode loading conditions in 2D [15–25] and 3D [26].
Basically, FFEM separates a 2D or 3D cracked elastic body into a
regular and a singular region (see Fig. 1), with the latter enclosing
the crack tip. Both the regular and the singular regions are modeled
by conventional, isoparametric finite elements. However, within
the singular region an infinite number of elements are generated
by a self-similar, fractal process to capture the singular behaviour
at the crack tip. The nodal displacements in the singular region are
transformed to a set of unknown coefficients using William’s ana-
lytical solution for the displacements near the crack tip [27]. Since
the stiffness matrix of an isoparametric element depends only on
its shape and not its actual dimensions, the above transformation
can be performed at the element-level and the results summed
up as geometrical progression series to be assembled to the global
stiffness matrix. The contributions of the infinite number of ele-
ments in the singular region are therefore fully accounted for while
the number of degrees of freedom involved remains finite.

Compared with other numerical methods like FEM, FFEM has
several advantages. First, by using the concept of fractal geometry,
infinite finite elements are generated virtually around the crack tip,
and hence the effort for data preparation can be minimized. Sec-
ond, based on the eigenfunction expansion of the displacement
fields [27,28], the infinite finite elements that generate virtually
by fractal geometry around the crack tip are transformed in an
expeditious manner. This results in reducing the computational
time and the memory requirement for fracture analysis of cracked
structures. Third, no special finite elements and post-processing
are needed to determine the SIFs. Finally, as the analytical solution
is embodied in the transformation, the accuracy of the predicted
SIFs is high.

Although FEM based SFMs are well developed, research in sto-
chastic FFEM has not been explored yet. This paper presents a
FFEM for SFM analysis of linear-elastic cracked structures. The
method comprises an FFEM as the deterministic kernel to calculate
fracture response characteristics; statistical models of uncertain-
ties in load, material properties, and crack geometry; and the
FORM to predict probabilistic fracture response and reliability of
cracked structures. The sensitivity of fracture parameters with re-
spect to crack size, required for probabilistic analysis, is calculated
using continuum shape sensitivity analysis of mixed-mode frac-
ture in conjunction with FFEM [29]. Numerical examples based
on mode-I and mixed-mode loaded cracked structures are pre-
sented to illustrate the proposed method.

2. Sensitivities of fracture parameters

2.1. Fractal finite element method

As depicted in the Fig. 1, FFEM divides the domain of a two
dimensional body into a regular and a singular region, with the lat-
ter enclosing the crack tip. In the Fig. 1, the boundary curve C0 sep-
arates the two regions. Both the regular and singular regions are
modeled using conventional finite elements. With the crack tip
as the centre of similarity and using n as the similarity ratio, an
infinite set of curves {C1,C2, . . .}, similar to C0 but with propor-
tional constants (n1,n2, . . .), are generated inside the singular re-
gion. Between the two curves Ck�1 and Ck, the region is named
the kth layer. Straight lines that connect the crack tip to the corner
nodes lying on C0 are then created, dividing each layer into a mesh
of elements with a similar pattern in the process. A fractal mesh is
thus generated in the singular region with conventional finite ele-
ments only being used. All nodes located on C0 are called the mas-
ter nodes (m), while those inside C0 are called the slave nodes (s).

2.1.1. William’s eigenfunction expansion
For a plane crack with traction-free faces subjected to arbitrary

far-field loading, the linear-elastic displacement field at the crack
tip obtained by the William’s eigenfunction expansion technique
[27] can be expressed as

u ¼
X1
n¼0

rn=2

2l
½aI

nG11ðn; hÞ þ aII
nG12ðn; hÞ�; ð1Þ

v ¼
X1
n¼0

rn=2

2l
½aI

nG21ðn; hÞ þ aII
nG22ðn; hÞ�; ð2Þ

where l is the shear modulus and Gij(n,h), with i; j = 1,2, are the
angular functions as given below:
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where r and h are the polar coordinates, j = (3 � m)/(1 + m) for plane
stress and j = 3 � 4m for plane strain with m being the Poisson’s ratio.

The coefficients aI;II
n can be determined after imposing loading

and other boundary conditions. Mode-I and mode-II SIFs, KI and
KII are related to the first degree coefficients ðaI;II

1 Þ in the series
which are directly associated with the r�1/2 term in the stresses
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Fig. 1. Cracked body domain with regular region, singular region, and fractal mesh.
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