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a b s t r a c t

The direct coupling scheme between the molecular dynamics (MD) and lattice Boltzmann method (LBM)
is established in this paper. Different from the existing coupling schemes which are based on the
exchange of the density and velocities, the proposed coupling scheme is based on the velocity distribu-
tion functions. Firstly, the relations between the discrete velocity distribution functions of LBM and the
continuous velocity distribution functions of MD are derived based on the Hermite expansions. Then, the
coupling schemes between MD and LBM are proposed. The inconsistency between the equation of states
of MD and LBM is specially treated and the deviatoric stresses are exchanged. The coupling simulations of
the Poiseuille flow and Couette flow demonstrate that both the velocity and stress can be well exchanged
by the coupling scheme. The coupling simulation of the flow past a nanotube shows that the proposed
method can be further used in the study of microscopic fluid flow problems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the development of the micro-electro-mechanical sys-
tems (MEMS), the fluid flow and heat transfer in micro-/nano-
scale have drawn a lot of attentions. When the characteristic
lengths of the fluid flow and heat transfer problems are compara-
ble to the mean free path of the molecules, new phenomena such
as the velocity slip and temperature jump occur [1]. These phe-
nomena are different from the assumptions and descriptions of
the continuum models. In order to simulate and predict these phe-
nomena, the molecular dynamic (MD) simulation is widely
employed. Since the MD simulation has to deal with the motion
of each molecules, it consumes much more computational
resources than the continuum approaches. Therefore, the hybrid
or coupling models are proposed to couple the MD with the tradi-
tional numerical methods to increase its efficiency [2,3]. In the
hybrid methods, the computational domain is decomposed. The
MD is only applied in the area where it is necessary and in the rest
of the domain the continuum method is used to save the computa-
tional time. The information of the MD and continuum methods
are exchanged at the interfaces [4].

In the recent years, the lattice Boltzmann method (LBM) has
been rapidly developed. The LBM is based on the kinetic theory,
which is between the macroscopic continuum models and the
microscopic molecule motions. Therefore, it is a mesoscopic
method and it can be a bridge between the macroscopic method
and the molecular methods [5]. Consequently, many works has
been done to couple the LBM with the macroscopic and micro-
scopic methods to establish the multiscale numerical methods
[6–16]. Although the coupling between LBM and macroscopic/
mesoscopic methods has been widely studied [7–12], the coupling
between LBM and the microscopic MD method still needs further
studies. Therefore, in this work we focus on the coupling between
MD and LBM.

It should be mentioned that there are other kinds of hybrid
numerical methods. For example, the MD can be applied separately
to get the interfacial tension, wettability and other properties of
the fluid systems, and then the properties are adopted in the mul-
tiphase LBMmodels [17]. In the other field-wise coupling schemes,
the continuum methods are applied in the whole computational
region and the MD is used as the correction and refinement for
the constitutive laws and boundary conditions of the continuum
methods [18,19]. These coupling methods are difference from the
coupling method in this paper. Here the coupling method is based
on the domain decomposition. The LBM and MD are applied
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simultaneously in different regions, and the information exchange
between them is the key problem of the method.

In the existing researches about the coupling between LBM and
MD, Dupuis et al. [13,14] proposed a hybrid LBM-MDmodel for the
simulation of dense fluids. The Schwarz alternating method is used
to decouple the time scales of the MD and LBM. At the LBM bound-
ary, a forcing term is added to the governing equation to impose
the velocity boundary condition from MD to LBM. This approach
is either adopted in a one-cell-wide strip (velocity-coupling) or
all the common area (velocity-gradient-coupling). At the MD
boundary, the molecular velocities relax to the desired velocities
given by the LBM with a small relaxation parameter. The flow past
a carbon nanotube (CNT) is simulated and the results of the cou-
pling method agree well with the reference MD solutions. Neu-
mann et al. [15] developed the parallel MD-LBM software based
on the similar method. Zhou et al. [16] also coupled LBM with
MD. In their simulation, the reconstruction operator, which is pro-
posed for the coupling between LBM and macroscopic methods, is
used at the LBM boundary to convert the velocity and density into
the distribution functions of LBM. For the inverse information
transfer, the velocities of the molecules in the boundary areas are
reset according to a Maxwell distribution which is obtained from
the velocities and temperatures of the LBM simulation.

In the above coupling strategies, the variables transferred
between MD and LBM are only density and velocities. However,
both the MD and LBM contain more information than these vari-
ables. For example, the velocities of each molecule and the interac-
tion between each pair of molecules are known in MD. In the LBM,
the density distribution functions of each discrete velocity are
known, which can give not only the local density and velocities,
but also the local stress tensor. Therefore, if only the density and
velocities are transferred, the information is lost and not suffi-
ciently used. There should be a coupling strategy which directly
links the micro-/meso-scale and transfers information more suffi-
ciently. This kind of coupling method can also give more insights
between the LBM and MD.

There are some existing coupling schemes that also take into
consideration of the stress tensor. For example, Delgado-
Buscalioni and De Fabritiis coupled MD with fluctuating hydrody-
namics, in which the stress calculated in the MD is transferred to
the continuum method by a flux coupling [20]. Di Staso et al. cou-
pled LBM with Direct Simulation Monte Carlo (DSMC) [11,12]. The
Hermite expansions are used for the transformation between con-
tinuous and discrete velocity distribution functions. Due to the
similarity between DSMC and MD, this coupling scheme has the
potential to be further extended to the coupling between LBM
and MD.

Therefore, in the present work, we try to extend the direct cou-
pling method via the velocity distribution functions proposed by Di
Staso et al. [11,12] to the case of coupling between MD and LBM. In
the rest of the paper, the MD and LBM are briefly reviewed in Sec-
tions 2 and 3. In Section 4, based on the velocity distribution func-
tions, the coupling scheme between LBM and MD is established.
Then, the numerical tests of the coupling scheme are conducted
in Section 5. Finally, some conclusions are given in Section 6.

2. Molecular dynamics simulation

In the molecular dynamic, the motion of every molecule is cal-
culated. For the classical molecular dynamics, the motion of the
molecule is described by Newton’s second law as

m0€ri ¼ f i ð1Þ

in which m0 is the mass of a molecule, ri is the location of the ith
molecule and fi is the force acting on that molecule, which contains

the interaction between molecules and the external forces. The
Lennard-Jones (L-J) potential is used in this work to describe the
interactions. The potential u is a function of the distance, r = |ri � rj|,
between two molecules as [21]

uðrÞ ¼ 4e
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Here r and e govern the interaction length and strength of the
potential. rc is the cutoff distance for the potential and we chose
rc = 2.5r. In the computation, it is assumed that there is no interac-
tion between a pair of molecules when the distance between them
is larger than rc. The second and third term in the brace can guaran-
tee the continuous of the potential and force at r = rc. The interac-
tion force that molecule j exerts on i is

f ij ¼ � @uðrÞ
@ri

¼ � @uðrÞ
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Therefore, the force acting on a molecule is the summation of all the
interaction force on it and the external force fei as

f i ¼
X
j

f ij þ fei ð4Þ

In the present work, for convenience, the following dimensionless
variables are used in the MD simulations:

r ¼ rMDr; ð5Þ

t ¼ tMD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0r2=e

q
ð6Þ

v ¼ vMD

ffiffiffiffiffiffiffiffiffiffiffi
e=m0

p
¼ vMD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0T0=m0

q
¼ vMDv0 ð7Þ

m ¼ mMDm0 ð8Þ

T ¼ TMDe=k0 ¼ TMDT0 ð9Þ

E ¼ EMDe ð10Þ
In the above equations, r, t, v, m, T and E denote the length, time,
velocity, mass, temperature and energy. k0 is the Boltzmann con-
stant. The variables with the subscript MD are dimensionless vari-
ables, and the variables with subscript 0 denote scales. We will
ignore the subscript MD in the rest of the paper and the dimension-
less values of MD are used in all the following problems.

In order to obtain the macroscopic values, the computational
region in MD are divided into several cells. Then, the macroscopic
values of each cell are calculated by the ensemble average of the
molecules inside the cell. However, the system size for LBM simu-
lations can be pushed down to one molecule per cell [22]. There-
fore, instead of just using a spatial average, a temporal average
over an interval dtM should be also applied in each cell. For the
non-steady-state simulations, the dtM should be much smaller than
the characteristic time scale of the problem. For the steady-state
problems considered in this work, a sufficiently long dtM is chosen
to control the statistical errors in each cell. For example, the
macroscopic density q, velocity u, stress tensor P and temperature
T are calculate by

qMD ¼ N
V
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