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a b s t r a c t

The discrete systems generated by spectral or hp-version finite elements are much more ill-conditioned
than the ones generated by standard low-order finite elements or finite differences. This paper focuses on
spectral elements based on Gauss–Lobatto–Legendre (GLL) quadrature and the construction of primal
and dual non-overlapping domain decomposition methods belonging to the family of Balancing Domain
Decomposition methods by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Intercon-
necting (FETI-DP) algorithms. New results are presented for the spectral multi-element case and also
for inexact FETI-DP methods for spectral elements in the plane. Theoretical convergence estimates show
that these methods have a convergence rate independent of the number of subdomains and coefficient
jumps of the elliptic operator, while there is only a polylogarithmic dependence on the spectral degree
p and the ratio H/h of subdomain and element sizes. Parallel numerical experiments on a Linux cluster
confirm these results for tests with spectral degree up to p ¼ 32, thousands of subdomains and coefficient
jumps up to 8 orders of magnitude.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

High-order finite element methods based on spectral elements
or hp-version finite elements improve the accuracy of the discrete
solution by increasing the polynomial degree of the basis functions
as well as the number of elements. Usually, hp-version finite ele-
ments are based on hierarchical non-nodal basis functions and
have been studied mostly in the structural mechanics community;
see, e.g., Szabó and Babuška [54]. Spectral elements are based on
tensorial nodal bases associated with Gauss–Lobatto–Legendre
(GLL) quadrature nodes and have been studied mostly in the fluid
dynamics community; see, e.g., Canuto et al. [11], Bernardi and
Maday [6], Funaro [26], Karniadakis and Sherwin [31], Deville
et al. [14]. The discrete systems generated by these high-order
methods are much more ill-conditioned than the ones generated

by standard low-order finite elements. While still proportional to
the inverse of the square of the element size, the condition number
of these high-order discrete systems is typically proportional to the
cube or fourth power of the polynomial degree of the basis func-
tions employed. Therefore, the construction of efficient precondi-
tioners for these methods is a challenging and important issue.
Particularly open to research are preconditioners for non-tensorial
spectral and hp-finite elements, usually on triangular and tetrahe-
dral elements; see Ainsworth [1], Bica [8], Pavarino and Warburton
[47], Sherwin and Casarin [52], Giraldo and Warburton [27], Pava-
rino et al. [44], Schöberl et al. [51]. In this paper, we will focus on
tensorial GLL spectral elements only.

Domain decomposition methods are preconditioned iterative
algorithms for the solution of the large systems obtained from
the discretization of partial differential equations. In domain
decomposition methods, the domain associated with the partial
differential equation is decomposed into a, possibly large, number
of subdomains. On these subdomains, local problems are defined
which are solved in each iteration step in order to define an
approximate inverse of the system matrix. In order to obtain a
numerical and parallel scalable algorithm, also a small coarse prob-
lem has to be introduced and solved in each iteration step.
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In this article, we consider non-overlapping domain decomposi-
tion methods belonging to the family of Dual-Primal Finite Ele-
ment Tearing and Interconnecting (FETI-DP) methods, see Farhat
et al. [21,22], Klawonn et al. [36,33,35,38], and their primal coun-
terparts, the algorithms known as Balancing Domain Decomposi-
tion methods by Constraints (BDDC); see Dohrmann [15], Mandel
and Dohrmann [41], Mandel, Dohrmann, and Tezaur [42], Cros
[13], or Li and Widlund [39]. In these methods, the condition num-
ber only depends weakly on the polynomial degree. We will also
consider inexact versions of the FETI-DP methods; see Klawonn
and Rheinbach [34]. Inexact BDDC methods have been considered
by Tu [57,56] and recently by Li and Widlund [40] and Dohrmann
[16]. The family of FETI-DP algorithms descended from the earlier
one-level and two-level FETI algorithms, see Farhat and Roux
[25,24], Farhat, Mandel, and Roux [23], Farhat and Mandel [19],
Farhat, Pierson, and Lesoinne [20]. Already the FETI method has
been used in large-scale parallel simulations, e.g. [7].

We note that preliminary serial results on a smaller scale for
FETI-DP and BDDC spectral element preconditioners with only
one element for each subdomain and only exact solvers have been
considered by Pavarino [46]. Also, in [53] FETI and FETI-DP meth-
ods for spectral elements were already compared for the case of
a single spectral element per subdomain. In this paper, we present
new results for both BDDC and FETI-DP methods for spectral ele-
ment discretizations with multi-element subdomains, efficient
inexact coarse solvers for FETI-DP and a scalable parallel imple-
mentation. These results allow us to extend the previous serial re-
sults of [53,46] to large-scale tests with spectral degree up to
p ¼ 32, thousands of subdomains and coefficient jumps up to 8 or-
ders of magnitude, thus confirming the theoretical bound on the
condition number of the preconditioned operators.

2. Spectral element discretization of second order elliptic
problems

Let Tref be the reference square ð�1;1Þ2, and let QpðTrefÞ be the
set of polynomials on Tref of degree p P 1 in each variable. We as-
sume that the domain X can be decomposed into Ne non-overlap-
ping finite elements Tk of characteristic diameter h

X ¼
[Ne

k¼1

Tk; ð1Þ

each of which is an affine image of the reference square,
Tk ¼ /kðTrefÞ, where /k is an affine mapping (more general maps
could be considered as well). In the next section, we will group
these elements into N non-overlapping subdomains Xi of character-
istic diameter H, forming themselves a coarse finite element parti-
tion of X

X ¼
[N
i¼1

Xi; Xi ¼
[Ni

k¼1

Tk: ð2Þ

Hence the fine element partition (1) can be considered a refinement
of the coarse subdomain partition fXigN

i¼1 in (2), with matching
finite element nodes on the boundaries of neighboring subdomains.

We consider linear, selfadjoint, elliptic problems on X, with
zero Dirichlet boundary conditions on a part oXD of the boundary
oX:

Find u 2 V ¼ ft 2 H1ðXÞ : t ¼ 0 on oXDg such that

aðu; tÞ ¼
Z

X
qðxÞru � rtdx ¼

Z
X

fvdx 8t 2 V : ð3Þ

Here qðxÞ > 0 can be discontinuous, with very different values for
different subdomains, but we assume this coefficient to vary only
moderately within each subdomain Xi. In fact, without decreasing

the generality of our results, we will only consider the piecewise
constant case of qðxÞ ¼ qi, for x 2 Xi.

Conforming spectral element discretizations consist of continu-
ous, piecewise polynomials of degree p in each element:

Vp ¼ ft 2 V : tjTi
� /i 2 Q pðTrefÞ; i ¼ 1; . . . ;Neg: ð4Þ

A convenient tensor product basis for Vp is constructed using
Gauss–Lobatto–Legendre (GLL) quadrature points; other bases
could be considered, such as those based on integrated Legendre
polynomials common in the p-version finite element literature;
see Szabó and Babuška [54]. Let fnigp

i¼0 denote the set of GLL points
on [�1,1], and let ri denote the quadrature weight associated with
ni. Let lið�Þ be the Lagrange interpolating polynomial which vanishes
at all the GLL nodes except ni, where it equals one. The basis func-
tions, e.g., on the reference square, are then defined by a tensor
product as

liðx1Þljðx2Þ; 0 6 i; j 6 p:

This basis is nodal, since every element of QpðTrefÞ can be written as

uðx1; x2Þ ¼
Xp

i¼0

Xp

j¼0

uðni; njÞliðx1Þljðx2Þ:

Each integral of the continuous model (3) is replaced by GLL
quadrature. On Tref

ðu; tÞp;Tref
¼
Xp

i¼0

Xp

j¼0

uðni; njÞtðni; njÞrirj;

and on all of X

ðu; tÞp;X ¼
XNe

k¼1

Xp

i;j¼0

ðu � /kÞðni; njÞðt � /kÞðni; njÞjJkjrirj;

where jJkj is the determinant of the Jacobian of /k. This inner prod-
uct is uniformly equivalent to the standard L2-inner product on
QpðTrefÞ:

kuk2
L2ðTref Þ 6 ðu; uÞp;Tref

6 27kuk2
L2ðTref Þ 8u 2 QpðTrefÞ; ð5Þ

see Bernardi and Maday [6]. These bounds imply an analogous uni-
form equivalence between the H1ðXÞ-seminorm and the discrete
seminorm ðru;ruÞn;X based on GLL quadrature. Applying these
quadrature rules, we obtain the discrete bilinear form

apðu; tÞ ¼
XNe

k¼1

ðqkru;rtÞp;Tk
;

and the discrete elliptic problem:
Find u 2 Vp such that

apðu; tÞ ¼ ðf ; tÞp;X 8t 2 Vp: ð6Þ

Having chosen a basis for Vp, the discrete problem (6) is then
turned into a linear system of algebraic equations

Kgug ¼ fg; ð7Þ

where Kg is the globally assembled, symmetric, positive definite
stiffness matrix. We have denoted with the same symbols ug and
fg the vectors representing the corresponding spectral element
functions in the given basis.

3. FETI-DP and BDDC domain decomposition

3.1. Primal and dual iterative substructuring

In substructuring methods, the computational domain X � R2 is
decomposed into non-overlapping subdomains Xi. Let us denote by
N the number of subdomains, each subdomain is the union of finite
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