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a b s t r a c t

This paper introduces a dimensionless group for pressure drop, named Bejan number (Be), to be used
with non-Newtonian fluids. When defining Be for non-Newtonian fluids, it is necessary to choose a char-
acteristic apparent viscosity to compose this dimensionless group. In non-Newtonian fluid dynamics, the
viscosity at a characteristic shear rate is usually chosen as reference, with the latter given as the reference
velocity divided by the reference length. When the flow rate is not known, a reference velocity may be
taken as the square root of the pressure drop divided by the mass density. Thus, a characteristic apparent
viscosity may be defined for any non-Newtonian model, even for one that does not present a character-
istic viscosity defined explicitly in the viscosity function, such as the power-law model. The non-
dimensionalization of motion equations for the crossflow of a power-law fluid between two aligned
cylinders was performed using this philosophy. Some numerical tests were performed to corroborate
the idea that the introduced form for Be is a good alternative to be used in experiments to predict and
evaluate the heat transfer density in the context of Constructal Design of heat exchangers tube bundles.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Constructal Design is a method to assess the effect of geometric
parameters on the performance of systems with the objective of
providing easier access to the currents that flow through them
[7,8,6]. This method has been employed elsewhere to investigate
the design of tube bundles to maximize the heat transfer density
[24,17,10,18]. Due to designs that increase heat transfer by convec-
tion also increase friction, a good choice in this kind of investiga-
tion is to look for optimal geometries for fixed values of pressure
drop. This has been the method employed in works guided by Con-
structal Design Method, such as [27,24,10,14]. Constructal Design
has also been applied to discover best configurations by important
contributions in other domains dealing with transport phenomena,
e.g. the transport of ionic species through a porous medium by
means of electrokinetics [16] and minimize the diffusion transfer
resistance and determine the macroscopic diffusion coefficient
[29].

In order to investigate such problems using dimensionless
parameters, a dimensionless pressure drop parameter is needed,
to be used as a constraint in a constant pressure drop analysis. A

pioneer paper by Battacharjee and Grosshandler [11] has intro-
duced a dimensionless pressure drop parameter to the analysis
of a jet and suggested the name Bejan number for this parameter.
In their work, the Bejan number was defined as

Be ¼ DpL2

lm
; ð1Þ

since the problem did not involve heat transfer. Later, Petrescu [20]
observed the similarity between this dimensionless group and the
dimensionless pressure drop parameter introduced in the paper of
Bejan and Sciubba [9] about forced convection between parallel
plates. They named this parameter Bejan number. This Bejan num-
ber had the form

Be ¼ DpL2

al
: ð2Þ

Stanescu et al. [27] employed a pressure drop based Reynolds
number, and Rocha and Bejan [24] also employed dimensionless
pressure drop parameter referred to as pressure drop number. In
the paper by Bello-Ochende and Bejan [10], the name Bejan num-
ber was finally adopted to designate the pressure drop number,
and the balance equations were non-dimensionalized using only
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the Bejan and Prandtl numbers as similarity parameters. Joucaviel
et al. [14] also employed this formulation in the Constructal Design
of rotating cylinders in cross-flow.

Awad [2] introduced a modified Bejan number for mass transfer
applications, and Awad and Lage [3] introduced a general Bejan
number, in which the diffusivity, d, of the kind of process under
consideration is employed in the denominator in the form

Be ¼ DpL2

qd2
: ð3Þ

This formulation avoids that the Prandtl number be in the
momentum equation in the resulting non-dimensionalized gov-
erning equations as in Bello-Ochende and Bejan [10] and Joucaviel
et al. [14].

Regarding Constructal Design for heat transfer in tube bundles,
in order to use a dimensionless pressure drop to non-Newtonian
fluids, a characteristic viscosity, gc, must be defined. The usual scal-
ing method for purely viscous non-Newtonian fluids comprises
using gc as the apparent viscosity at a characteristic shear rate,
_cc. As _cc , it is usual to employ the rate characteristic velocity-
characteristic length, U/L e.g. [5,13,22,19]. Some authors, as Kozicki
et al. [15], Rao [21] and Chabra and Richardson [12], assume that
the characteristic viscosity should be taken as the value which
keeps the relation f = 16/Re true for laminar fully developed flow
through a channel of arbitrary but uniform cross-section. This
choice is controversial when dealing with external flows, and it
is also dependent on having an analytical or even experimental
result for the internal flow. The choice of a characteristic viscosity
or a characteristic shear rate has been a subject of discussion in
papers such as Souza Mendes [26] and Thompson and Soares
[28]. These authors argue that gc should be a rheological parameter
of the fluid, such as the infinite-shear-rate viscosity. Other works
employ gc as the viscosity calculated at an exact place in the prob-
lem domain. However, this option is weak because gc is only
known a posteriori, when the flow is already solved. The shortcom-

ing in using a rheological gc is that, when using a fluid model such
as power-law, a rheological gc is not defined.

In this work, a form to obtain a characteristic viscosity for a
power-law fluid based on an imposed pressure drop is introduced.
This formulation may be employed to the Constructal Design of
heat exchangers, following the methodology presented in Bello-
Ochende and Bejan [10] and Joucaviel et al. [14].

2. Background

The basic idea for the introduction of a dimensionless number
based on pressure drop is to scale the velocity components using
not a reference velocity, as usual, but a reference pressure drop.
Bejan [9] has introduced, in the context of Newtonian fluids, the
following scaling:

~xi ¼ xi
L
; ~ui ¼ u

DpL=l
; ~p ¼ p

Dp
; ~T ¼ T � T0

Tw � T0
; ð4Þ

where xi is the position vector, ui is the velocity vector, p is the pres-
sure, L is a characteristic length, Dp is the reference pressure drop
and l is the fluid viscosity. The dimensionless temperature is also
employed in terms of two reference temperatures T0 and Tw. Note
that a characteristic velocity is given by the relation DpL/l, which
relates the flow rate to the pressure drop and fluid viscosity, as
one would probably expect.

In this case, the usual equations for incompressible flow,
namely the continuity equation, the momentum equations and
the energy balance equation in terms of temperature may be writ-
ten on their dimensionless form, respectively as:

@~ui

@~xi
¼ 0; ð5Þ

Be
Pr

~uj
@~ui

@~xj
¼ � @~p

@~xi
þ @2~ui

@~xi@~xi
; ð6Þ

Nomenclature

Be Bejan number, Be ¼ DpL2=al
BeNN non-newtonian Bejan number, BeNN ¼ DpL2=agc
cp specific heat
D diameter
Dij strain rate tensor
~Dij dimensionless strain rate tensor
f Fanning friction factor
K consistency index
k thermal conductivity
L characteristic length
Ld downstream flow length
Lu upstream flow length
n flow index
p pressure
~p dimensionless pressure
Pr Prandtl number, Pr = lcp/k
PrNN non-newtonian Prandtl number, PrNN ¼ gc=qa
q0 heat transfer rate per unit length
~q dimensionless heat transfer density
Re Reynolds number
S0 spacing between cylinders
T temperature
T0 fluid temperature
Tw wall temperature
~T dimensionless temperature
U characteristic velocity

uave average velocity
ui velocity vector
~uave dimensionless average velocity
~ui dimensionless velocity vector
xi position vector
~xi dimensionless position vector
a thermal diffusivity
d general diffusivity
Dp pressure drop
g viscosity function
gc characteristic viscosity
g0 zero shear rate viscosity
g1 infinite shear rate viscosity
gp plastic viscosity
~g dimensionless viscosity function
k time coefficient
l dynamic viscosity
m kinematic viscosity
q density
_cc characteristic shear rate
s stress magnitude
s0 yield stress
sij extra-stress tensor
~sij dimensionless extra-stress tensor
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