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a b s t r a c t

Sufficiently smooth nonlinear PDE problems may be addressed through the higher order derivative com-
putations of the so-called Asymptotic Numerical Method (ANM). In this paper, we theoretically discuss
the generic solution of nonlinear residual equations. We then propose a Matlab implementation of the
ANM based on Automatic Differentiation which allows for significant improvements in genericity and
ease of use. The Diamant toolbox we construct is applied to the study of the geometrical nonlinear behav-
ior of a laminated glass beam. Numerical results and experimental performances demonstrate the effi-
ciency of the Diamant tool.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Sufficiently smooth nonlinear PDE problems may be tackled
through the higher order derivative computations of the so-called
Asymptotic Numerical Method [1,2]. Truncated Taylor series are
introduced in the PDE problem of interest to exhibit a sequence
of linear systems following the same pattern. Each of these sys-
tems, one per order of differentiation, involves the tangent linear
matrix and peculiar right-hand side terms containing higher order
derivative formulae. It is worth noticing that these formulae differ
from the classical differentiation recurrence formulae since they
miss the term used in the construction of the tangent linear matrix.
At given points, ANM computed series allow for cheap evaluations
of approximate solutions in their vicinity. From a computational
point of view, the ANM alternates higher order derivative calcula-
tions and linear system solutions in an iterative process. Due to
this specific features, the ANM series computations were mainly
handwritten. Some automation efforts were made [3,4] for nonlin-
ear PDE problems written under the prescribed form

Rðv; kÞ ¼ L0 þ LðvÞ þ Qðv; vÞ þ kF ¼ 0; ð1Þ

where Rðv; kÞ 2 Rn is the residual vector depending on the un-
known vector v 2 Rn and the load parameter k 2 R. In [3,4], the
decomposition into functions L0 (constant), L (linear) and Q (qua-
dratic) remains a user concern.

Automatic Differentiation [5] (AD) is a generic approach that al-
lows for higher order differentiation. The AD-based Diamant ap-
proach (as a French acronym for DIfférentiation Automatique de la
Méthode Asymptotique Numérique Typée) has been targeted [6] for
hiding the ANM differentiation aspects to the user. Within Dia-
mant, right-hand side series computations are achieved by propa-
gating Taylor coefficients of the residual R [6,7]. As presented here,
theoretical aspects may be discussed in a generic fashion whatever
the residual equations, the discretization method and the behavior
law are.

From a computational point of view, Diamant relies on Operator
Overloading (OO) as the vehicle for attaching our higher order
derivative computations to the arithmetic operators and intrinsic
functions provided by the programming language. We focus our
attention on object-oriented Matlab programming techniques for
an efficient and generic implementation of the ANM. Equivalent
Diamant packages were developed in Fortran 90 [6] and C++ [7].
Once the differentiation abilities of the OO library are validated,
the Diamant toolbox may be used with confidence for the solution
of any smooth residual equation.

Laminated glasses are sandwich structures combining two or
more glass sheets with one or more interlayers of elastomeric poly-
mer (polyvinyl butyral, PVB). These are widely used as architec-
tural glazing in contemporary buildings or as windscreens in
automotive industries. Geometrical effects as well as the difference
between the glass properties and the PVB time and temperature
dependent properties induce complex nonlinear behaviors. This
mainly explains why most literature on laminated glass is based
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upon experimental studies. A review may be found in [8–10]. Some
analytical and numerical studies were recently developed for pre-
dicting the nonlinear behavior of laminated glass beams and plates.
On the one hand, As�ik [8,9] applies an iterative method based on a
finite difference scheme for the study of the geometrical nonlinear
behavior of laminated glass beams and plates. As discussed in [8,9],
a solution is reached using a tuned under-relaxation parameter. On
the other hand, an analytical model is developed in [10] for analysis
of the linear static behavior of laminated glass beam set on visco-
elastic supports. A linear free vibration analysis [10] is also studied
by means of a finite element method implemented within Matlab.
In the present paper, we illustrate the Diamant abilities (genericity
and efficiency) with a numerical study of geometrical nonlinear ef-
fects on laminated glass structures. The Diamant toolbox we pres-
ent offers the genericity of both a finite element discretization
and the Diamant approach.

The layout of the paper is as follows: Section 2 presents the high-
er order ANM equations on generic nonlinear PDE problems and
Section 3 discusses the Diamant approach we adopt to tackle the
differentiation stages. The Diamant toolbox allowing for an easy
implementation of the ANM is described in Section 4. Usage and
performances are presented in Section 5 on a nonlinear laminated
glass ODE problem. Some perspectives are proposed as a conclusion.

2. Setting of the generic problems

The generic nonlinear residual equation we consider is

Rðv; kÞ ¼ 0; ð2Þ

where Rðv; kÞ 2 Rn is the residual vector depending on the un-
known vector v 2 Rn and the load parameter k 2 R. Solutions ðv; kÞ
of this under-determined system of n nonlinear equations in nþ 1
unknowns form a branch that may be described considering v and
k as functions of a path parameter a. Hereafter we consider the
pseudo-arc-length equation:

Path eq: : a ¼ vðaÞ � vð0Þ; ov
oa
ð0Þ

� �
þ ðkðaÞ � kð0ÞÞ ok

oa
ð0Þ; ð3Þ

where h.,.i is a dot product. When R is ‘‘quadratic” in v, i.e. R verifies
Eq. (1), two ‘‘less” generic formulations may be written

Case A : RAðv; kÞ ¼ AðvÞSðvÞ þ kF ¼ 0;
Case B : RBðv; kÞ ¼ BðvÞvþ kF ¼ 0:

ð4Þ

In former equations, the matrix AðvÞ depends linearly on v whereas
the matrix BðvÞ and the vector SðvÞ depend on v in a nonlinear fash-
ion. The load vector F 2 Rn is a constant. The nonlinear laminated
glass problem we consider in Section 5 agrees with both
formulations.

In order to apply the ANM we assume that a#vðaÞ, a#kðaÞ,
ðv; kÞ#Rðv; kÞ, v#BðvÞ and v#SðvÞ are analytic functions. Taylor
coefficients at order k of vðaÞ, kðaÞ, bðaÞ ¼ B � vðaÞ and
sðaÞ ¼ S � vðaÞ evaluated at point a ¼ 0 are respectively denoted
by vk ¼ 1

k!
okv
oak ð0Þ, kk ¼ 1

k!
okk
oak ð0Þ, bk ¼ 1

k!
okðB�vÞ

oak ð0Þ and sk ¼ 1
k!

okðS�vÞ
oak ð0Þ.

Following the ANM methodology, truncated Taylor seriesPK
k¼0akvk,

PK
k¼0akkk,

PK
k¼0akbk and

PK
k¼0aksk are introduced in (3)

and (4). This yields:

Case A : A
XK

k¼0

akvk

 ! XK

k¼0

aksk

 !
þ

XK

k¼0

akkk

 !
F ¼ 0;

Case B :
XK

k¼0

akbk

 ! XK

k¼0

akvk

 !
þ

XK

k¼0

akkk

 !
F ¼ 0;

Path eq: :
XK

k¼0

akvk

 !
� v0; v1

* +
þ

XK

k¼0

akkk

 !
� k0

 !
k1 ¼ a:

ð5Þ

The use of the Leibniz formula and the identification of terms in ak

yield recurrent sequences of K linear systems of equations:

Case A :
Xk

l¼0

Aðvk�lÞsl þ kkF ¼ 0; 8k ¼ 1; . . . ;K;

Case B :
Xk

l¼0

bk�lvl þ kkF ¼ 0;

Path eq: : hv1; vki þ k1kk ¼ d1k:

ð6Þ

Series sk or bk are formulation dependent. As noticed in [2], numer-
ical results of the ANM do not depend on the implementation of for-
mulation (6A), formulation (6B) or their equivalent quadratic form.
Before Diamant was developed [6], the implementation of either
the quadratic form or the series sk or bk was an user task.

Once implemented, truncated Taylor expansions
PK

k¼0akvk andPK
k¼0akkk are approximations of vðaÞ and kðaÞ in the vicinity of

a ¼ 0 that allow for branch computations in path following prob-
lems [11]. Many nonlinear mechanical equations agree with the
residual form (2). Plasticity [12], contact [13], nonlinear constitu-
tive laws [14] as well as nonlinear eigenvalue problems [15] and
nonlinear forced vibration problems [16] were already addressed
by means of the ANM. An exhaustive review may be found in [2].

As discussed in the following, Diamant enables the evaluation of
ANM series through a propagation of Taylor coefficients. This prop-
agation may be achieved in an automatic fashion whatever the
specificities of the problem – formulations (6A) or (6B), discretiza-
tion method, constitutive law are.

3. The Diamant approach

The governing idea of the Diamant approach is the introduction
of genericity in the ANM computations.

3.1. Theoretical basis

Our theoretical developments are based on the generic Faá di
Bruno formula for the higher order differentiation of compound
functions. It is worth noticing that we use it for theoretical pur-
poses only: the actual computational differentiation is performed
by means of AD techniques (see Section 4).

The Faá di Bruno formula applied to B � v yields:

bðkÞ ¼ ðB � vÞðkÞ ¼
Xk

l¼1

BðlÞbk;lðvð1Þ; . . . ; vðk�lþ1ÞÞ; ð7Þ

where variables vðkÞ ¼ k!vk and BðkÞ ¼ k!Bk ¼ okB
ovk ðvð0ÞÞ are the deriva-

tives at order k of v and B, respectively, and bk;lðvð1Þ; . . . ; vðk�lþ1ÞÞ (for
l ¼ 1; . . . ; k) are Bell polynomials [17] satisfying:

bk;lðvð1Þ; . . . ; vðk�lþ1ÞÞ ¼
X k!

i1! � � � ik�lþ1!

vð1Þ

1!

� �i1

� � � vðk�lþ1Þ

ðk� lþ 1Þ!

� �ik�lþ1

:

ð8Þ

This sum is over all partitions of k into l non-negative parts such
that i1 þ i2 þ � � � þ ik�lþ1 ¼ l and i1 þ 2i2 þ � � � þ ðk� lþ 1Þik�lþ1 ¼ k.
Hereinafter, theoretical developments are performed for n ¼ 1 for
the sake of clarity in the differentiation notations. As proved in
[7], Eq. (6A) may be written as

Case A : LA
Tvk þ kkF ¼ RA

k ; ð9Þ
where LA

T is the tangent linear matrix satisfying

LA
Tv ¼ AðvÞS0 þ Aðv0ÞS1v; 8v: ð10Þ

Right hand-side terms are

RA
k ¼ �

Xk�1

l¼1

Aðvk�lÞsl � Aðv0Þ
Xk

l¼2

l!
k!

Slbk;lðvð1Þ; . . . ; vðk�lþ1ÞÞ
 !

; ð11Þ
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