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a b s t r a c t

The unsteady adaptive stochastic finite elements method based on time-independent parametrization
(UASFE-ti) is an efficient approach for resolving the effect of random parameters in unsteady simulations.
It achieves a constant accuracy in time with a constant number of samples, in contrast with the usually fast
increasing number of samples required by other methods. In this paper, an alternative unsteady adaptive
stochastic finite elements formulation based on interpolation at constant phase (UASFE-cp) is developed
to further improve the accuracy and extend the applicability of UASFE-ti. In addition to achieving a con-
stant number of samples in time, interpolation at constant phase: (1) eliminates the parametrization error
of the time-independent parametrization; (2) resolves time-dependent functionals, which cannot be mod-
eled by the parametrization; and (3) captures transient behavior of the samples, which is an important
special case of time-dependent functionals. These three points are illustrated by the application of
UASFE-cp to random parameters in a mass–spring–damper system, the damped nonlinear Duffing oscil-
lator, and an elastically mounted airfoil with nonlinearity in the flow and the structure. Results for differ-
ent types of probability distributions are compared to those of UASFE-ti and Monte Carlo simulations.
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1. Introduction

It is recognized in the engineering community that there is an
increasing need to move towards unsteady simulations in compu-
tational fluid dynamics. For example, large model inaccuracies in
steady RANS simulations of turbulent flow give rise to more accu-
rate unsteady turbulence modeling. Continued grid refinement in
steady computations can also result in unsteady behavior, such
that a steady grid converged solution might not be as well-defined
as generally assumed. This trend towards unsteady simulations
will also dictate an increasing application of uncertainty quantifi-
cation methods to unsteady problems.

The most widely used methods for uncertainty quantification in-
clude Monte Carlo simulation [9], (non-intrusive) polynomial chaos
methods [1,8,10,20,25,30], probabilistic collocation approaches
[2,17,21], and stochastic finite elements methods [6,12,13,22,29].
In Monte Carlo simulation [9] many deterministic problems are
solved for randomly varying parameter values. Non-intrusive poly-
nomial chaos methods [10,20] attempt to reduce the number of
deterministic solves by using a polynomial interpolation of the
samples in parameter space. An effective sampling in suitable Gauss
quadrature points is employed in probabilistic collocation ap-
proaches [2,17,21]. A more robust approximation is achieved by

stochastic finite elements methods [6,12,13,22,29], in which a
piecewise polynomial interpolation of the samples is employed.
All these methods have in common that they are mainly developed
for steady problems such as in [26], although unsteady applications
can be found in, for example, [3,14,15,16,19,23].

In unsteady problems non-intrusive uncertainty quantification
methods usually require a fast increasing number of samples with
time to maintain a constant accuracy. This behavior is caused by
the increasing nonlinearity of the response surface for increasing
integration times [22]. This effect is especially profound in prob-
lems with oscillatory solutions in which the frequency of the re-
sponse is affected by the random parameters [18,19,23]. The
frequency differences between the realizations lead to increasing
phase differences with time, which in turn result in an increasingly
oscillatory response surface and more samples. Asymptotic behav-
ior is of practical interest in, for example, post-flutter analysis of
fluid–structure interaction systems [3]. Resolving the effect of ran-
dom input parameters in these long time integration problems re-
quires a large number of deterministic computations. Especially
in computationally intensive unsteady flow computations and
fluid–structure interaction simulations, such a large sample size
can lead to impractically high computational costs. For applications
involving oscillatory motion a Fourier chaos basis has been intro-
duced by Millman et al. [14]. In this paper, an efficient alternative
approach for uncertainty quantification in oscillatory problems is
proposed.
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The probabilistic collocation for limit cycle oscillations
(PCLCO) [27] approach was developed by the authors to achieve
a constant accuracy in time with a constant number of samples
for period-1 oscillations. The PCLCO formulation is based on the
application of probabilistic collocation [2,17,21] to a time-inde-
pendent parametrization of the sampled periodic responses in-
stead of to the time-dependent samples themselves. Due to the
time-independent parametrization the interpolation accuracy of
PCLCO is independent of time for a constant number of samples.
The parametrization employed in PCLCO consists of the fre-
quency, relative phase, amplitude, a reference value, and the nor-
malized period shape. The applications of PCLCO were, however,
limited to the asymptotic range of period-1 oscillations with a
sufficiently smooth response surface as function of a single ran-
dom input parameter.

The range of applicability of PCLCO was extended in [28] to the
unsteady adaptive stochastic finite elements formulation based on
time-independent parametrization (UASFE-ti), which combines a
robust adaptive stochastic finite elements (ASFE) interpolation
based on Newton–Cotes quadrature in simplex elements [29] with
an extension of the time-independent parametrization of PCLCO.
The robust ASFE interpolation enables resolving singular behavior
in the system response such as bifurcation phenomena. The
time-independent parametrization is in UASFE-ti extended to (1)
non-periodic oscillations by accounting for a damping factor and
(2) higher-period oscillations by adding an algorithm for identify-
ing higher-periods. UASFE-ti has also successfully been applied to
problems with multiple random input parameters. The UASFE-ti
formulation can, however, be subject to a considerable parametri-
zation error in the time-independent representation of the sam-
pled time series. Furthermore, the application of UASFE-ti is
limited to the asymptotic range of responses which allow for a
time-independent parametrization.

In this paper, an alternative unsteady adaptive stochastic finite
elements formulation based on interpolation at constant phase
(UASFE-cp) is developed to further improve the accuracy and ex-
tend the applicability of UASFE-ti. As mentioned above, the usual
increase of the number of samples with time is caused by increas-
ing phase differences between the realizations. Scaling the samples
with their phase and performing the uncertainty quantification
interpolation of the samples at constant phase instead of at con-
stant time, eliminates the effect of the phase differences. The in-
crease of the number of samples with time due to an
increasingly oscillatory response surface is, therefore, avoided by
interpolation at constant phase. In addition to the constant number
of samples in time, the proposed UASFE-cp formulation has the fol-
lowing three advantages over UASFE-ti:

(1) Parametrization error is eliminated
The time-independent parametrization of the samples in
UASFE-ti is subject to numerical discretization and interpo-
lation errors. UASFE-cp uses an exact representation of the
samples, which improves the convergence behavior of the
method.

(2) Time-dependent functionals can be resolved
The application of UASFE-ti is limited to time series which
can be represented by time-independent functionals such
as frequency and damping. UASFE-cp is applicable to time
series in which these functionals change in time. Time-
dependent functionals are encountered in practice in, for
example, damped nonlinear systems.

(3) Transient behavior can be captured
Deterministic transient behavior is an important special case
of time-dependent functionals that cannot be captured by
the time-independent parametrization of UASFE-ti. The
UASFE-cp formulation is capable of resolving the effect of

random parameters in both the asymptotic and transient
regime of the samples. Transient behavior is seen in virtually
all nonlinear practical applications.

UASFE-cp can be applied to problems in which the phase of the
oscillatory samples is well-defined. Multi-frequency signals can be
handled by first decomposing them into multiple single frequency
time series using a wavelet decomposition. The unsteady adaptive
stochastic finite elements formulation based on interpolation at
constant phase is introduced in Section 2. The effect of the elimina-
tion of the parametrization error on the convergence of UASFE-cp
is studied for a mass–spring–damper system in Section 3.1. In Sec-
tion 3.2 UASFE-cp is employed to resolve the effect of multiple ran-
dom parameters on a response with time-dependent functionals of
the damped nonlinear Duffing oscillator. The stochastic bifurcation
behavior of the fluid–structure interaction system of nonlinear
flow around an elastically mounted airfoil with nonlinear struc-
tural stiffness is analyzed in Section 3.3. This application involves
transient behavior in the post-bifurcation region. Results for vari-
ous probability distributions are compared to those of UASFE-ti
and Monte Carlo simulations. The paper is concluded in Section 4.

2. Unsteady adaptive stochastic finite elements based on
interpolation at constant phase

The procedure for interpolation at constant phase in the unstea-
dy adaptive stochastic finite elements framework is developed in
Section 2.1. The adaptive stochastic finite elements formulation
employed for the interpolation is briefly reviewed in Section 2.2.
In Section 2.3 the resulting UASFE-cp algorithm is summarized.

2.1. Interpolation at constant phase

Consider a dynamical system subject to n uncorrelated second-
order random input parameters aðxÞ ¼ fa1ðxÞ; . . . ; anðxÞg 2 A,
which governs an oscillatory response uðx; t;xÞ
Lðx; t; uðx; t;xÞÞ ¼ Sðx; tÞ; ð1Þ

with operator L and source term S defined on domain D� T , and
appropriate initial and boundary conditions. The spatial and tempo-
ral dimensions are defined as x 2 D and t 2 T , respectively, with
D � Rd, d ¼ f1;2;3g, and T ¼ ½0; tmax�. A realization of the set of out-
comes X of the probability space (X, F, P) is denoted by x 2 X, with
F � 2X the r-algebra of events and P a probability measure.

Assume that the phase of the oscillatory samples ukðtÞ � uðt;xkÞ
for realizations of the random parameters ak � aðxkÞ is well-de-
fined for k ¼ 1; . . . ;Ns. The argument x has been dropped here for
convenience in the notation. In order to interpolate the samples
ukðtÞ at constant phase, first, their phase as function of time /kðtÞ
is extracted from the deterministic solves ukðtÞ. Second, the time
series for the phase /kðtÞ are used to transform the samples ukðtÞ
to functions of their phase u�kð/kÞ instead of time, see Fig. 1. For dis-
crete time histories the vectors uk and u�k are identical. Third, the
transformed samples u�kð/kÞ are interpolated to the function
u�ð/;xÞ using adaptive stochastic finite elements interpolation.
This step involves both the interpolation of the sampled phases
/kðtÞ to the function /ðt;xÞ and the interpolation of the samples
u�kð~/Þ to the function u�ð~/;xÞ at constant phase ~/. Repeating the lat-
ter interpolation for all phases ~/ results in the function u�ð/;xÞ. Fi-
nally, transforming u�ð/;xÞ back to uðt;xÞ using /ðt;xÞ yields the
unknown response surface of the system response as function of
the random parameters aðxÞ and time t. Integrating this response
surface approximation results in an approximation of the statistical
moments of the response.

The phase /kðtÞ is extracted from the samples based on the lo-
cal extrema of the time series ukðtÞ. A trial and error procedure

J.A.S. Witteveen, H. Bijl / Comput. Methods Appl. Mech. Engrg. 198 (2008) 578–591 579



Download English Version:

https://daneshyari.com/en/article/499356

Download Persian Version:

https://daneshyari.com/article/499356

Daneshyari.com

https://daneshyari.com/en/article/499356
https://daneshyari.com/article/499356
https://daneshyari.com

