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a b s t r a c t

We use a ghost-cell based high-order immersed boundary method (IBM) to study the thermal interaction
between entrained solid spherical particles and a turbulent velocity- and temperature-carrying flow. The
sphere diameter (D) is about eight times the Kolmogorov scale (g). The ambient turbulent field is isotro-
pic, and the Taylor microscale Reynolds number is 50. The inflow turbulent velocity intensity varies from
0.05 to 0.1, and the intensity of temperature fluctuation varies from 0.1 to 0.4. The particle volume frac-
tions are 0.01 and 0.02, and particle-to-fluid density ratios are 1.2, 10.0, and 100.0. It is observed that the
particle-to-fluid density ratio affects the Nusselt number the most, followed by the solid volume fraction
and turbulence intensity, while the effect of the intensity of temperature fluctuation is relatively small. It
is also shown that correlations that have been proven to be valid for a single stationary particle can devi-
ate significantly from the exact value obtained by directly integrating the dimensionless temperature
gradient over the surface of the particle. Better estimates can only be gained by also taking the local flow
and thermal conditions into consideration, in addition to the particle Reynolds number.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer between a solid dispersed phase and a fluid con-
tinuous phase is of theoretical and application importance and
has attracted continued attention. Many researchers have derived
correlations of Nusselt number for heat transfer from a single
sphere under steady and uniform flow, from experiments [1,2] or
from numerical simulation [3]. Bagchi et al. [4] showed the local
Nusselt number distributions over a spherical surface at numerous
Reynolds numbers. Richter and Nikrityuk [5] simulated heat trans-
fer from spherical, cuboidal, and ellipsoidal particles, as well as a
sphere with cylindrical bore [6]. All these studies are confined to
a regular-shaped stationary particle subject to a steady and uni-
form ambient flow.

In the natural environment and in many industrial applications,
millions of particles are usually dispersed in the carrier fluid, and
the particles are transported by the action of hydrodynamic forces.
On the other hand, particles may serve as sources of disturbances
to stimulate turbulence in the multiphase flow, especially when
the Reynolds number is sufficiently high. Although there are many
studies on turbulence modulation by fully resolved particles [7–9],

or on the effect of turbulent fluctuations on the drag and lift forces
on a particle [10], studies on particle–turbulence thermal interac-
tions are rare.

Bagchi and Kottam [11] looked into the role of freestream veloc-
ity and temperature fluctuations in modifying the mean and time-
dependent heat transfer from a sphere. Their results confirmed
that the generally available correlations for a steady and uniform
ambient flow were also validated for predicting the instantaneous
Nusselt number of a single stationary particle under turbulent
ambient condition. Hashemi et al. [12] considered stationary, con-
stant velocity and freely moving single particle transferring heat
with fluid in a rectangular microchannel. But the inflow is uniform.

For multiparticle systems, Maheshwari et al. [13] investigated
the effect of blockage ratio on the steady flow and heat transfer
characteristics of incompressible fluid over an inline array of three
spheres placed at the axis of a tube. Kao et al. [14] investigated the
sphere blockage ratio on the thermal–hydraulic characteristics of a
pebble with 14 spheres. Both these studies used stationary sphere
arrays.

Tenneti et al. [15] designed a so-called ‘‘thermally fully devel-
oped flow” to examine the regime of validity of statistical homo-
geneity in the average fluid temperature field, which is the
implicit assumption in two-fluid computational fluid dynamics
(CFD) models. They assumed that there is no relative slip velocity
between particles, so that they could average over different imple-
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mentations with different fixed particle configurations. However,
the validation of this assumption itself is questionable.

In the current article, we use a ghost-cell based high-order
immersed boundary method (IBM) to simulate the heat transfer
process of hundreds of freely moving spherical particles under con-
ditions of velocity and temperature fluctuations. The main objec-
tive of this study is to investigate the influence of turbulent
fluctuations on the heat transfer process between the particles
and the carrier fluid. Detailed analysis of the numerical results
indicates that both the particle motion and turbulent fluctuations
contribute to the increase of the interphase heat transfer
coefficient.

The next section (Section 2) introduces the numerical strategies
to solve the governing equations of the fluid and solid phases, as
well as the main feature of the IBM. Other crucial simulation
details, such as turbulence generation and parameter settings,
are provided in Section 3. Section 4 contains the main body of this
article, with results and discussion. And finally, some concluding
remarks are given in Section 5.

2. Numerical strategy

2.1. Governing equations

For constant-property viscous incompressible Newtonian fluid,
the transport phenomena are governed by the conservation equa-
tions for mass, momentum, and thermal energy, in dimensionless
form, given by the following expressions:

r � u� ¼ 0; ð1Þ
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where u� is the dimensionless velocity vector and P� is the dimen-
sionless pressure. The dimensionless temperature is defined as
T� ¼ ðT � T0Þ=ðTS � T0Þ, where T0 is the constant far-field tempera-
ture, TS is the isothermal particle temperature, and T is the dimen-
sional fluid temperature. The three dimensionless characteristic
numbers in the governing equations are the Reynolds number
Re ¼ ðq0 � U � DÞ=l, the Peclet number Pe ¼ Re � Pr, and the Prandtl
number Pr ¼ ðcP � lÞ=k. Here, we take the mean inflow velocity U
as the characteristic velocity and the particle diameter D as the
characteristic length scale. Furthermore, q0, l, cP , and k are the fluid
density, dynamic viscosity, specific heat, and coefficient of thermal
conductivity, respectively. Finally, the kinematic viscosity m ¼ l=q0.

The governing equations are solved by an independently devel-
oped fractal step-based finite difference method under uniform
Cartesian grids. The pressure Poisson equation, derived by applying
the divergence operator to the momentum equations, replaces the
continuity Eq. (1) that is satisfied indirectly through the solution of
the pressure equation. The pressure Poisson equation is discretized
by the second-order center-difference scheme and solved by a suc-
cessive low relaxation (SLR) method until the error of mass conser-
vation reduces to 10�6. Eqs. (2) and (3) are integrated in time using
a four-stage fourth-order Runge-Kutta method with the third-
order Adams–Bashforth method for convection terms and Crank–
Nicolson method for diffusion terms. For example, the convective
term in the heat equation, CT ¼ u� � rT�, can be expressed as
follows:
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The diffusion term, DT ¼ �r2T�=Pe, gives the expression
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where L represents the discretized Laplace operator and h the grid
size.

The spatial derivative in the diffusion term is evaluated by a
sixth-order central compact finite difference scheme, by which
the first derivative (f 0) of a primary variable f is evaluated as
follows:
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where subscript i is the spatial index. A third-order upwind com-
pact scheme is adopted for the convective term.

For suspended solid particles, their translational and rotational
motions are governed by the Newtonian equations of motion,
respectively, given as follows:
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where mp and Ip are the mass and the moment of inertia of the par-
ticle, respectively.

And the f ! s terms represent the drag and torque exerted upon
the particle by the fluid. They are calculated from integrating vis-
cous stress and pressure contribution components around the
sphere surface:
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where n
!
is the outward unit normal vector, r

!
are position vectors to

points at particle surface, and r
!
p is the position vector to the center

of the sphere.

2.2. Immersed boundary method

We used a ghost-cell based high-order IBM to represent the
existence of solid particles in the fluid domain. Its core idea is
approximating the Taylor series expansion on a body intercept
point by an Nth-order polynomial, which consists of the nearest
ghost point whose flow information is to be determined and a
set of adjacent fluid points on which flow information is already
known.

Mathematically, in the vicinity of the immersed boundary, a
generic variable / can be expressed as the Taylor series expansion
based on a specifically chosen boundary point (body intercept
point ððx0; y0; z0ÞjBI ¼ ð0;0; 0Þ), with the following form:
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where x0 ¼ x� xBI; y0 ¼ y� yBI; z
0 ¼ z� zBI.

In practice, Eq. (10) is approximated by an Nth-order
polynomial:

/ðx0; y0; z0Þ � Uðx0; y0; z0Þ

¼
XN
i¼0

XN
j¼0

XN
k¼0
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