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a b s t r a c t

In this work we investigate the effect of heat and mass transfer on the dynamics of gas-vapor bubbles. We
present phase diagrams for the bubble oscillation regimes, which are built by comparison of various mod-
els with different level of simplification for an air-water system. These diagrams show the range of valid-
ity of the simplifying assumptions on the Peclet-number/vapor-content plane, providing an insight on the
physical process which regulates the bubble response with respect to external pressure perturbations.
The analysis is presented for both the linear and weakly non-linear regime. In the former case we use lin-
earized solutions of the full system; in the latter, numerical simulations validated against the analytical
solutions in the linear limit. We show that even at very low frequencies, there exist regimes where tran-
sient diffusion effects arise and restrict the applicability of the commonly-adopted assumption of full-
equilibrium conditions inside the bubble. Non-linearity is found to restrict even further the range of
applicability of this hypothesis, due to the variation of the vapor content beyond a critical value.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The response of liquids containing bubbles to external pressure
changes has important implications in engineering, geophysical
and biomedical applications [1,2]. Dilute systems in which bubbles
contain a negligible amount of vapor have been extensively inves-
tigated, both theoretically and experimentally (see [3] for a
review). However, the consequences of phase transition in liquids
containing bubbles with an appreciable amount of vapor are not
completely understood. Although theoretical and experimental
studies show that heat- and mass-transfer effects have a non-
negligible influence on the bubble response [4] and thus, on the
overall fluid properties [5–7], it is also possible to find conditions
where mass-transfer effects are not evident and/or more difficult
to capture [8]. Available works in the literature propose different
quantities to determine whether mass-transfer effects are relevant
or not [9,10] but the problem is that a solid base for modeling still
lacks [11]. Systematic approaches for dilute mixtures with bubbles
containing vapor in addition to a permanent gas have been pro-
posed only recently [11–13]. In these latter works, the authors
firstly address the response of a single bubble to a varying pressure
field considering heat- and mass-transfer effects, and then discuss
the implications on the speed of sound in the mixture.

The development of numerical codes able to correctly predict
the response of bubbles undergoing phase change is challenging.
One possibility for fast bubble oscillations is to assume that the
influence of both the heat and the mass flux across the interface
on the bubble’s pressure are negligible compared to the pressure
changes imposed by the gas volume change. In this case the bubble
response is adiabatic and one can relate volume and pressure
changes through a polytropic transformation. At the other extreme,
for very slow pressure/temperature variations, it can be assumed
that the bubble reaches a thermodynamic equilibrium with its sur-
roundings so that the vapor pressure is uniform and solely given by
the system’s temperature. Within these two limiting solutions, the
mass flux across the interface is influenced by the diffusion of mass
and heat both in the liquid surrounding the bubble and inside the
bubble playing an important role on how the bubble’s pressure
change as a function of volume. Unfortunately, the definition of
the relevant dimensionless parameters that determine the rele-
vance of various mechanisms on the bubble’s response and the
total mass flux is not straightforward and it is difficult to find in
the literature quantitative studies about the range of validity of
various assumptions. In this view, the spherically symmetric
assumption provides a simple yet interesting situation to clarify
important phenomena about the dynamic response of a single bub-
ble with respect to external pressure/temperature perturbations.
Using this framework, several phenomena have already been
investigated using simplified models based on the Rayleigh–
Plesset equation and an effective equation of state that relates
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the bubble’s pressure and volume changes. For instance, it is pos-
sible to derive analytical expressions for the resonance frequency
and damping factor for pure-gas bubbles oscillating in the linear
limit (reviewed in [14]); heat-transfer, rectified diffusion and sec-
ondary resonance frequency for pure-vapor bubbles [15–19] and
the effect of soluble or insoluble gas on the dynamics of vapor bub-
bles [20–22]. Fuster & Montel [12] have recently proposed an ana-
lytical derivation of the resonance frequency and damping factor
for gas-vapor bubbles.

This manuscript presents an analysis of heat- and mass-transfer
effects on the dynamic response of gas-vapor bubbles. The manu-
script is structured as follows. Firstly, we address the problem of
linear oscillations and propose phase diagrams for the bubble
oscillation regimes, which are built by the comparison between
different simplified models and the full analytical solution for
gas-vapor bubbles. These diagrams show the range of applicability
of the various simplifying modeling assumptions, providing new
insight into the transport phenomena which control the physical
response of the bubble with respect to the vapor content and the
external pressure perturbation. Firstly, we discuss the regimes on
the Peclet-number/vapor-quantity plane for the transfer function
(which relates the bubble radius oscillation with the external per-
turbation) and show that, even for very low frequencies, transient
effects can prevent the commonly-adopted assumption of full-
equilibrium conditions inside the bubble. Secondly, we explore
the regimes beyond the linear limit using numerical solutions.
The code, which is validated against the analytical solution in the
linear limit, allows us to analyze the response of the bubble for var-
ious pressure amplitudes and to show the orbits described by the
local quantities on the phase diagrams. Non-linearity is found to
restrict the range of applicability of the full-equilibrium assump-
tion when local orbits span into other regimes.

2. Physical model

2.1. Governing equations

We consider a spherically-symmetric, non-reacting, gas-vapor
bubble standing in a pure liquid. The model relies on the mass,
momentum, energy and species conservation equations [23]. Inte-
grating the mass and momentum equations in the liquid yields the
well-known Rayleigh-Plesset equation, which, neglecting the com-
pressibility of the liquid while considering mass transfer effects
reads as [24]:
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In the above equation, R is the radius of the bubble, J the vapor-mass
flux across the interface, ql the liquid density, pb the bubble pres-
sure (assumed to be uniform), p1 the far-field liquid pressure, r
the surface tension and ll the viscosity of the liquid. The internal
pressure is assumed to obey the ideal gas law pb ¼ qbRbTb, being
qb the density inside the bubble and Rb the average specific gas
constant for the gas/vapor mixture. The energy and species conser-
vation equations in the radial coordinate are:
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where cp is the specific heat, Y the vapor molar fraction, Ct and Cm

are the thermal and mass diffusivities respectively and r is the
radial coordinate. The properties of the gas/vapor mixture are com-
puted from those of the pure substances using an arithmetic aver-

age. The total derivative for a generic (scalar or vector) quantity /
is defined as D/ ¼ @t/þ v r@r/, being v r the radial velocity.

The energy equation (2) is solved both inside the bubble and in
the surrounding liquid, while the species conservation equation (3)
is solved only for the vapor content inside the bubble, as in this
work we neglect the gas solubility in the liquid. We remark as this
latter approximation implies to neglect the rectified diffusion due
to the gas intake inside the bubble [25,26]; this effect arises in sec-
ond order and becomes relevant only for very large time scales
[27]. In this work we focus on time scales much shorter than those
where rectified diffusion effects play a role, which allows us to
assume this effect to be negligible.

The radial velocity profile inside the bubble is obtained from the
continuity equation, which can be rewritten using the energy
equation as [3]:
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with c being the polytropic index (ratio of specific heats) and kb the
averaged thermal conductivity of the species inside the bubble.

In order to close the problem, an additional equation is
required. One possibility is to impose that the interface of the bub-
ble is in equilibrium with the surrounding liquid at every instant.
In this case, the vapor concentration is given by the Clausius-
Clapeyron equation. Another possibility is to account for kinetic
mass transfer effects using the Hertz-Knudsen-Langmuir (HKL)
equation, which imposes the mass transfer flux as a function of
the difference between the instantaneous vapor pressure and the
equilibrium pressure at the interface’s conditions. It can be shown
that the model accounting for kinetic mass transfer effects con-
verges to the model assuming equilibrium conditions when either
vapor diffusion or heat transfer controls the overall mass transfer
rate [12]. In this work we focus on these latter conditions, where
the kinetics of the phase change does not have important contribu-
tion; however, for practical purposes, we retain the HKL model in
the implementation of the equations in the numerical code with
an accommodation coefficient equal to 0.35 (see [23] for further
details).

2.2. Boundary conditions

At the bubble center, the boundary conditions for the energy
equation (2) and the species equation (3) are imposed by spherical
symmetry as a zero-flux condition:
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At the bubble interface, the temperature profile is assumed to be
continuous, so Tbðr ¼ RÞ ¼ Tlðr ¼ RÞ. The energy balance yields:
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with Hv being the enthalpy of vaporization/condensation at the
interface’s temperature. We remark that the mass and momentum
conservation at the interface have been directly applied in the
derivation of Eq. (1), where the pressure far from the bubble is
known. For species, the boundary condition at the interface is given
by the continuity of the vapor mass:
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Finally, in the far field, the liquid temperature is imposed to be
equal to the bulk reference temperature T1.
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