
The finite cell method for three-dimensional problems of solid mechanics

A. Düster a,*, J. Parvizian b, Z. Yang a, E. Rank a

a Computation in Engineering, Faculty of Civil Engineering and Geodesy, Technische Universität München, Arcisstr. 21, 80333 München, Germany
b Isfahan University of Technology, Isfahan 84156 83111, Iran

a r t i c l e i n f o

Article history:
Received 31 October 2007
Received in revised form 25 February 2008
Accepted 29 February 2008
Available online 18 March 2008

Keywords:
Finite cell method
Fictitious domain method
Embedding domain method
Solid mechanics
High-order methods
p-FEM

a b s t r a c t

This article presents a generalization of the recently proposed finite cell method to three-dimensional
problems of linear elasticity. The finite cell method combines ideas from embedding or fictitious domain
methods with the p-version of the finite element method. Besides supporting a fast, simple generation of
meshes it also provides high convergence rates. Mesh generation for a boundary representation of solids
and for voxel-based data obtained from CT scans is addressed in detail. In addition, the implementation of
non-homogeneous Neumann boundary conditions and the computation of cell matrices based on a com-
posed integration is presented. The performance of the proposed method is demonstrated by three
numerical examples, including the elastostatic computation of a human bone biopsy.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The finite cell method (FCM), which was recently proposed by
the authors [1] can be interpreted as a combination of a fictitious
or embedding domain approach with high-order finite element
methods. It therefore combines the fast, simple generation of
meshes with high convergence rates. In fictitious domain methods
the original or physical domain is embedded in a geometrically lar-
ger domain of a simpler shape. Thanks to the simple geometry of
the embedding domain it can be readily discretized with struc-
tured or Cartesian grids. Different discretization methods can be
applied, ranging from finite difference to finite volume and finite
element methods. The name ‘‘fictitious domain method” was
coined by Saul’ev [2,3] in the early sixties. Since then the fictitious
domain method has been further developed and applied to model
problems arising in different areas of computational mechanics.
For an overview of the huge body of literature, please refer to
[4–6].

Perhaps the most relevant work on fictitious domain methods
with regard to the current paper was published by Bishop [7]
and Ramière et al. [5]. Bishop has used an implicit meshing for
two-dimensional problems of linear elasticity to discretize the
embedding domain. An algorithm to integrate the weak form ex-
actly is suggested in order to account for elements which are cut
by the physical boundary. It is shown that bi-cubic Hermite ele-

ments yield more accurate and efficient results of displacements
and stresses than bi-quadratic Lagrange elements. This could pro-
vide a clue for increasing the order of approximation space for bet-
ter results. Increase in accuracy from quadratic Lagrange elements,
that are C0-continuous, to Hermite cubics, that are C1-continuous,
may also be attributed to the increase in the level of continuity
or smoothness of the underlying discretization. For the role of con-
tinuity in the discretization of solids and fluids in the context of
isogeometric analysis the reader is referred to [8–10]. Despite
interesting achievements of Bishop [7], the algorithm to integrate
the weak form exactly is likely to become very expensive for
three-dimensional problems. Since the volume integrals are con-
verted to boundary integrals by means of the divergence theorem,
the approach is restricted to element-wise constant data, which
limits the approach to problems with homogeneous and linear
material or precludes the application of high-order shape functions
for nonlinear and inhomogeneous materials.

For Ramière et al., the core idea is again to immerse the original
domain into a simpler, geometrically larger one. Both finite volume
and bi-linear finite element methods are used to solve elliptic
problems with general boundary conditions. Different methods
for treating the boundary conditions are discussed. The literature
provides a wide scope of ideas and techniques for imposing bound-
ary conditions which are similar in nature but go by different
names. For a review of such techniques the reader is referred to [4].

In the finite cell method, as proposed by the authors [1], the
idea is to use an easily discretized domain in which the physical
domain is embedded. Therefore, as in all similar methods that
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are not based on a boundary-conforming mesh, the accuracy in dis-
cretizing the domain is replaced by an accurate integration
scheme. Assuming a soft material which fills the void regions of
the embedding domain makes a standard finite element discretiza-
tion possible. However, the fast convergence to an accurate result
is due to the fact that a high-order Ansatz space is used [11,12]. A
dense distribution of integration points serves both to capture the
boundary, as in level sets [13], and to increase the accuracy of inte-
gration over cells that are independent of the physical domain.

The structure of the paper is as follows: Section 2 summarizes
the finite cell formulation for three-dimensional problems of linear
elastostatics. This includes the variational formulation, the imple-
mentation of boundary conditions and the computation of cell
matrices. Section 3 discusses the generation of meshes for different
types of geometric models. The performance of the proposed meth-
od is presented in Section 4 using three numerical examples.

2. The finite cell method

We closely follow the description in [1] to explain the finite cell
method. For better clarity and understanding, the figures are pre-
sented in two dimensions but the formulation applies similarly
in three dimensions, as demonstrated in the examples.

2.1. Variational formulation

Let us assume that on a three-dimensional physical domain X, a
problem of linear elasticity is described by the weak form of equi-
librium as
Bðu; vÞ ¼FðvÞ; ð1Þ
where the bilinear part is

Bðu; vÞ ¼
Z

X
½Lv�TC½Lu�dX; ð2Þ

in which u is the displacement, v is the test function, L is the stan-
dard strain–displacement operator and C is the elasticity matrix.
Note that the principles of the method are not restricted to linear
differential operators. Without loss of generality we assume homo-
geneous Dirichlet boundary conditions �u ¼ 0 along CD and a Neu-
mann boundary CN with prescribed tractions, oX = CD [ CN, and
CD \ CN = ;. The linear functional

FðvÞ ¼
Z

X
vTf dXþ

Z
CN

vT�tdC ð3Þ

takes the volume loads f and prescribed tractions �t into account.
The original physical domain can now be embedded in the do-

main Xe with the boundary oXe. For the sake of simplicity, the sit-
uation is depicted for a two-dimensional case in Fig. 1. The
interface between X and the embedding domain is defined as
CI = oXn(oX \ oXe). Following Neittaanmäki and Tiba [14], the dis-
placement variable is extended as

u ¼ u1 in X;

u2 in Xe n X;

(
ð4Þ

while the transition conditions guarantee continuity at the interface
between X and XenX:

u1 ¼ u2 on CI;

t1 ¼ t2 on CI:
ð5Þ

Boundary conditions are set for oXe

�u ¼ 0 on Ce;D;

�t ¼ 0 on Ce;N;
ð6Þ

in which Ce,D and Ce,N are the Dirichlet and Neumann boundaries of
Xe respectively, oXe = Ce,D [ Ce,N, and Ce,D \ Ce,N = ;. The first condi-
tion in (6) is generally necessary to avoid rigid body motion. The
weak form of the equilibrium equation for the embedding domain
Xe is given as

Beðu; vÞ ¼FeðvÞ; ð7Þ

where the bilinear form is

Beðu; vÞ ¼
Z

Xe

½Lv�TCe ½Lu�dX; ð8Þ

in which

Ce ¼ aC ð9Þ

is the elasticity matrix of the embedding domain, with

aðxÞ ¼
1:0 8x 2 X;

0:0 8x 2 Xe n X:

�
ð10Þ

Inserting (9) and (10) into (8), the bilinear functional turns to

Beðu; vÞ ¼
Z

Xe

½L v�TaC½Lu�dX

¼
Z

X
½Lv�TC½Lu�dXþ

Z
XenX
½Lv�T0½Lu�dX ¼ Bðu; vÞ: ð11Þ

The linear functional

FeðvÞ ¼
Z

Xe

vTaf dXþ
Z

CN

vT�tdCþ
Z

Ce;N

vT�tdC ð12Þ

considers the volume loads f, prescribed traction along CN interior to
Xe and prescribed traction at the boundary of the embedding do-
main. Due to Eq. (6)2, the last term in (12) can be assumed 0.

The embedding domain is now discretized in a mesh which is
independent of the original domain. These ‘‘finite elements” of
the embedding domain do not necessarily fulfill the usual geomet-
ric properties of elements for the original domain X, as they may be
intersected by oX. To distinguish them from classical elements
they will be called finite cells. It is simpler and more advantageous
to initially assume cells to be rectangular hexahedrals (cuboids)
resulting in a constant Jacobian matrix of the cell-wise mapping.
Fig. 2 illustrates the situation for a two-dimensional setting. The
union of all nc cells forms the embedding domain

Xe ¼
[nc

c¼1

Xc; ð13Þ

Fig. 1. The domain X is embedded in Xe.
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