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a b s t r a c t

This paper introduces a new hydrodynamic boundary condition which enables the simulation of the
effects caused by rough boundaries. The classical Rayleigh-Bénard stability analysis is performed here
to investigate the onset of thermal convection in a parallel-plate channel with rough boundaries. The
hydrodynamic boundary conditions are modified, from the classical treatment, in order to consider chan-
nel boundaries characterised by non-negligible roughness. This roughness is simulated as a shallow fluid
saturated porous medium and the Saffman interface condition is thus employed to model the hydrody-
namic boundary conditions. The normal mode method is employed and the obtained eigenvalue problem
is solved numerically. The Principle of Exchange of Stabilities is proved and the critical values of the
Rayleigh number and of the wave number are obtained.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The effect of boundary roughness on turbulent flows is well
studied, see Jimenez [1]. Boundary roughness is important when
transition from laminar to turbulent flow in pipes is investigated,
because for smooth boundaries the linear stability analysis pre-
dicts infinitely stable flow, Cotrell [2]. Roughness of the porous/
fluid interface is also shown to have significant effects on turbulent
flows in composite porous/fluid domains, even if turbulence in the
porous domain is neglected, Kuznetsov [3]. In laminar flows, which
are stratified, the effect of boundary roughness is usually negligi-
ble. The situation may be different when flows in microchannels
are considered. Nield and Kuznetsov [4] have shown that laminar
flows in such channels may be very sensitive to any boundary
roughness because in microchannels boundary roughness could
occupy a significant portion of the channel width. Boundary rough-
ness may also be important in narrow biological cavities, such as
the nodal pit, Kuznetsov [5].

The cellular flow field generated by temperature gradient
induced density variations is called Rayleigh-Bénard convection
[6] and is one of the best known problems in natural convection.
In such cases, buoyancy is the main mechanism responsible for
triggering the instability that drives the flow. In this paper we
investigate the effect of large boundary roughness on the onset
of Rayleigh-Bénard convection in a parallel-plate channel with

rough boundaries. Because the exact profile of the rough surface
could be very complex, modeling this problem requires suggesting
a new boundary condition that would simulate hydrodynamic
phenomena at the rough boundary. In order to account for the
additional momentum loss due to the rough portion of the bound-
ary we propose simulating this region by replacing it with a thin
porous layer. The problem then becomes similar to a convection
problem in a composite domain consisting of a clear fluid core
and two porous regions at the boundaries, see, for example, Kuz-
netsov [7].

2. Mathematical model

A Newtonian fluid saturating a horizontal channel is studied
here to establish the onset of buoyancy driven convective instabil-
ity. The two horizontal plates that bound the channel are imperme-
able and separated by a distance H. The classical Rayleigh-Bénard
configuration is assumed: the lower boundary is held at a temper-
ature T0 þ DT and the upper boundary is held at a temperature T0.
On assuming the Oberbeck-Boussinesq approximation, the conser-
vation equations that describe the system can be written as follows

$ � u ¼ 0;

q
@u
@t

þ qu � $u ¼ �$p� gb ðT � T0Þez þ lr2u;
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where u ¼ ðu;v;wÞ is the velocity vector, q is the fluid density, t is
the time, g is the gravity, b is the thermal expansion coefficient of
the fluid, ez is the unit vector in the z�direction, p is the excess pres-
sure (above hydrostatic), l is the hydrodynamic viscosity of the
fluid, T is the temperature and a is the thermal diffusivity. The ther-
mophysical properties of the fluid are evaluated at a reference tem-
perature T0.

The roughness of the channel boundaries is considered non-
negligible, see Fig. 1, such that the two boundaries cannot be trea-
ted as relatively smooth horizontal surfaces. The expression ‘‘rela-
tively smooth surface” means that the roughness of the surface is
negligible but the surface is not perfectly smooth in the sense of
Cotrell [2]. The roughness is a white noise space oscillation in the
z-direction, where the average value identifies the position of the
boundary. The aim of this study is to investigate how this rough-
ness may influence the onset of Rayleigh-Bénard instability. The
presence of the roughness is modelled by assuming that the two
horizontal boundaries are shallow porous layers. This assumption
allows one to employ, as a hydrodynamic boundary condition,
the Saffman interface condition [8] between a clear fluid and a fluid
saturated porous medium. The vertical velocity at the boundaries
is set equal to zero as a consequence of the assumption of shallow
porous layers. The hydrodynamic and thermal boundary condi-
tions may thus be expressed as follows

z¼0 :
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@z
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where n1 and n2 are dimensionless parameters that strongly depend
on the pore size of the shallow porous medium and thus on the
geometry of the interface between the clear fluid and the shallow
porous medium. Beavers and Joseph [9] have shown experimentally
that the parameter n can be correlated directly with the average
pore diameter at the interface. On the other hand, K1 and K2 are
the permeabilities of the two shallow porous regions. A low value
of Ki implies that the porous medium behaves as a solid material.
In this case, a relatively smooth surface is obtained and the no-
slip conditions are recovered: if one takes the limit Ki ! 0, the
boundary conditions at both z ¼ 0 and z ¼ H indeed become
u ¼ v ¼ 0, Eq. (2). When a high value of permeability is assumed,
a vanishing porous matrix is obtained such that a zero excess pres-
sure boundary condition at the boundary is obtained: if one takes
the limit Ki ! 1, the boundary conditions at both z ¼ 0 and z ¼ H
become @u=@z ¼ @v=@z ¼ 0, Eq. (2). The governing equations and
boundary conditions can now be written in a dimensionless form,
namely

Nomenclature

ez unit vector in the z�direction
f eigenfunction, Eq. (9)
g gravity
h eigenfunction, Eq. (9)
H channel height
k wavenumber, Eq. (9)
ðK1;K2Þ permeabilities of the shallow porous boundaries
p pressure
P pressure disturbance, Eq. (7)
Pr Prandtl number, Eq. (4)
Ra Rayleigh number, Eq. (4)
t time
T0 dimensional reference temperature
T temperature
u velocity vector, ðu;v ;wÞ
U velocity disturbance vector, ðU;V ;WÞ, Eq. (7)
x position vector, ðx; y; zÞ

Greek symbols
a thermal diffusivity
b thermal expansion coefficient

DT temperature gap between the boundaries
� dimensionless perturbation parameter, Eq. (7)
g perturbation growth rate, Eq. (9)
H temperature disturbance, Eq. (7)
K1; K2 dimensionless parameters, Eq. (4)
l dynamic viscosity
ðn1; n2Þ dimensionless parameters, Eq. (2)
q density
ðv1;v2Þ initial conditions employed in the shooting method, Eq.

(17)
W streamfunction
x perturbation angular frequency, Eq. (9)

Superscript, subscripts
� dimensional quantity
H complex conjugate
b basic state
c critical value
0 differentiation with respect to z

Fig. 1. Channel boundaries roughness and thermal boundary conditions.
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