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a b s t r a c t

This study proposes an inverse heat conduction methodology for laser heating treatment of a thin cylin-
der bonded to a strain gauge. The shifting function method is applied twice to respectively generate ana-
lytical solutions of temperature and thermal strain functions by giving the general type of unknown
temperature function at the heated end. Afterwards we used the least-squares method to minimize
the difference between theoretical calculated strains and the measured strains at an interior location
at the discrete measurement times; therefore, the whole temperature and heat flux functions of laser
heating process can be directly generated. The proposed methodology benefits the researches by avoiding
complex numerical operations, reducing the rank of the coefficient matrix of the least-squares method
from five to three, and setting the strain gauge on the cylinder surface easily. At last, one mathematical
and one experimental examples are used to demonstrate the accuracy and efficiency of this work via
using thermal strain measurements.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse heat conduction problem (IHCP) is usually defined
as the estimation of the surface heat flux and/or temperature his-
tories given one or more measured temperature histories inside a
heat-conducting body and has been written in textbooks [1–3].
Typical examples consist of heat exchangers, combustion cham-
bers, calorimeter-type instrument, and a shuttle or missile reenter-
ing the earth’s atmosphere from space. Besides, the laser surface
treatment of an object, including surface hardening, cladding,
and plating, has been widely used in the past decades in industrial
process. In general, its surface temperature must be held above the
critical transformation temperature, but less than the melting
point of the object in the surface hardening process. Therefore,
the IHCP of laser heat treatment is important in engineering appli-
cations. Because an IHCP problem is attributed to an ill-posed
mathematical problem, it requires both the inverse analysis
schemes and the extra experimental measurements. We will dis-
cuss them below in detail.

Regarding the inverse analysis schemes, many numerical tech-
niques use finite difference method, finite element method, and/
or Laplace transform method to solve the IHCP. For the problem
of laser heat treatment on a surface of a cylinder [4–7], Wang
et al. [5] in 2000 conducted an experiment to measure interior

temperatures using the thermocouples and performed an inverse
study by the conjugate gradient method. They found that the sen-
sor location nearby the heated surface can obtain more accurate
surface temperature. Later, Chen and Wu [6] proposed a hybrid
technique of Laplace transform and finite difference method to
estimate the laser heated surface temperature by using the exper-
imental data of Ref. [5]. Generally speaking, common methods of
IHCP must tackle stability in numerical schemes, use large num-
bers of cells or elements in matrix operation, and perform the com-
plex inverse Laplace transform, resulting in inefficient and
redundant efforts. In 2014, Lee and Huang [7] developed an
integral-transform-free methodology for one-dimensional IHCP
with time-dependent boundary conditions to estimate the heat
flux on the heated surface of laser heat treatment. Because the
heating time is short in laser heat process, they approximated
the unknown surface temperature using a fourth-degree polyno-
mial function (five undetermined coefficients) of time and utilized
the shifting function method to generate a closed solution. The
unknown coefficients of the polynomial function could be deter-
mined by using the least-squares method together with the analyt-
ical solution and temperature measurements. In a companion
study, they [8] divided the whole time domain into several sub-
time intervals to deal with long-time spray cooling problems.
Recently, without dividing the time domain, Lee and Yan [9] pro-
posed the half-range Fourier cosine to expand the unknown
time-dependent temperature function on the entire time domain.
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Regarding the experimental methods utilizing IHCP, thermo-
couple and strain gauge is two different choices, taking tempera-
ture and thermal strain at the interior location, respectively. To
date, most of work in IHCP has been limited to use the temperature
measurements [1–9]; however, the thermocouple might not be the
most appropriate sensor to take the internal measurements. In the
literature, only a few investigations [10–12] predicted the
unknown surface condition via using the strain gauge sensors. In
1981, Gyrsa et al. [10] combined the thermal stresses theory with
the Laplace transform method to investigate the temperature field
from the temperature, heat flux and displacement measurements
inside the solid; even so, the inversion of the unknown surface
temperature in the transform domain was cumbersome, resulting
in the difficulty of inverting the unknown surface temperature in
the transform domain to the physical quantity. Although they sug-
gested that the sensor must be located near the position of the
unknown boundary condition to obtain a more accurate estimated
result, their estimated results were sensitive to the internal mea-

surements and the magnitude of the time-step. Later, Blanc and
Raynaud [11] developed an analysis along with the quasi-static
and uncoupled assumptions to obtain the unknown boundary con-
dition of an IHCP by using the thermal strain and temperature
measurements instead of the temperature measurements only.
The discrete form of Duhamel’s integral and future time steps
was presented by Taler and Zborowski [12] to study IHCP concern-
ing thermal stress control in elements of complex shapes. In 2006,
Chen et al. [13] applied a hybrid numerical algorithm of the Laplace
transform technique, the finite-difference method with a
sequential-in-time concept, and the least-squares scheme to pre-
dict the unknown surface condition from the theory of dynamic
thermal stresses. As far as we know, none of the literature per-
formed the estimation of heat flux of laser heat treatment by using
the strain measurements.

This work develops a strain gauge measurement method to
measure the thermal strain and performs the inverse analysis of
laser heating process for the first time. We temporarily gave the

Nomenclature

Scalar
Bniði ¼ 1 � 6Þ auxiliary functions defined in Eqs. (B10)–(B15)
�Bniði ¼ 1 � 6Þ dimensionless auxiliary functions used to simplify

equations
c specific heat (W � s=kg �� C)
c0 parameter defined in the second term of Eq. (8)
diði ¼ 1 � 4Þ constants used to express time-dependent temper-

ature function
D the diameter of the test cylinder (m)
Diði ¼ 1 � 4Þ elements of matrix D and equal to diði ¼ 1 � 4Þ
e error of a strain gauge
E Young’s modulus
~E error function
f real time-dependent temperature function at the heated

end
~f time-dependent temperature function minus T0 at the

heated end
�f dimensionless quantity of ~f
gT , gu shifting functions for temperature and displacement

functions
G shear modulus (N=m2)
k thermal conductivity (W=m �� C)
k0 parameter defined in the first term of Eq. (8)
�K dimensionless quantity of koT0
L the length of the test cylinder (m)
Nn norm of trial functions
p number of measured times
�p dimensionless quantity defined below Eq. (66)
q heat flux function
qTn, qun time-dependent generalized coordinate for temperature

and displacement functions
�qTn, �qun dimensionless quantities of qTn, qun
r radial coordinate (m)
Ri elements of matrix R
t time variable (sec)
tm terminated time of laser beam application
tr discrete measured time (sec)
T real temperature function (�C)
~T equal to T minus T0 (�C)
T0 constant initial surrounding temperature (�C)
u; ur ; uh displacement functions in x�, r�, h� directions
U, V transformed functions for temperature and displace-

ment functions

U0 initial value of transformed function U
x space coordinate (m)
xm measurement position of strain gauge (m)
X; Xm dimensionless quantities of x and xm
Zij elements of matrix Z

Matrix and vector
D vector defined in Eq. (60)
R vector defined in Eq. (60)
Z coefficient matrix defined in Eq. (60)

Greek symbols
a thermal diffusivity (m2=s)
at linear coefficient of thermal expansion
b dimensionless quantity of u
diði ¼ 1 � 4Þ quantities defined in Eq. (B4)
�diði ¼ 1 � 4Þ dimensionless quantities defined in Eq. (C15)
dir the abbreviation of diðxm; trÞ
e, er , eh thermal strain functions in x�, r�, h� directions
emeas, eexact measured and exact thermal strains
/Tn, /un eigenfunctions for temperature and displacement func-

tions
u auxiliary integration variable
cTn, cun auxiliary functions for temperature and displacement

functions
glðl ¼ 1 � 4Þ quantities defined in Eq. (57)
�glðl ¼ 1 � 4Þ dimensionless quantities defined in Eqs. (C21)–

(C24)
glr the abbreviation of glðxm; trÞ
kn eigenvalue
l standard deviation
m Poisson’s ratio
h circumference coordinate
�h, �h0 dimensionless temperature functions
q mass density (kg=m3)
r, rr , rh thermal stresses (N=m2)
s, smA, smB, siði ¼ 1 � 4Þ Fourier numbers
nn auxiliary relationship

Subscripts
0; A; B; i; j; k; l; m; n; r; t; T; u; h –
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