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The paper presents an alpha finite element method («FEM) for computing nearly exact solution in energy
norm for mechanics problems using meshes that can be generated automatically for arbitrarily compli-
cated domains. Three-node triangular («FEM-T3) and four-node tetrahedral («FEM-T4) elements with a
scale factor « are formulated for two-dimensional (2D) and three-dimensional (3D) problems, respec-
tively. The essential idea of the method is the use of a scale factor « € [0,1] to obtain a combined model
of the standard fully compatible model of the FEM and a quasi-equilibrium model of the node-based
smoothed FEM (N-SFEM). This novel combination of the FEM and N-SFEM makes the best use of the
upper bound property of the N-SFEM and the lower bound property of the standard FEM. Using meshes
with the same aspect ratio, a unified approach has been proposed to obtain a nearly exact solution in
strain energy for linear problems. The proposed elements are also applied to improve the accuracy of
the solution of nonlinear problems of large deformation. Numerical results for 2D (using «FEM-T3) and
3D (using «FEM-T4) problems confirm that the present method gives the much more accurate solution
comparing to both the standard FEM and the N-SFEM with the same number of degrees of freedom
and similar computational efforts for both linear and nonlinear problems.
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1. Introduction

For many decades, the constant finite elements such as the
three-node triangle and four-node tetrahedron are popular and
widely used in practical. The reason is that these elements can
be easily formulated and implemented very effectively in the finite
element programs using piecewise linear approximation. Further-
more, most FEM (finite element method) codes for adaptive analy-
ses are based on triangular and tetrahedral elements, due to the
simple fact that triangular and tetrahedral meshes can be automat-
ically generated.

However, these elements possess significant shortcomings,
such as poor accuracy in stress solution, the overly stiff behavior
and volumetric locking for plane strain problems in the nearly
incompressible cases. In order to overcome these disadvantages,
some new finite elements were proposed. For the triangular ele-
ments, Allman [1,2] introduced rotational degrees of freedom at
the element nodes to achieve an improvement for the overly stiff
behavior. Elements with rotational degrees of freedom were also
considered in Ref. [3,4]. Piltner and Taylor [5] combined the rota-
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tional degrees of freedom and enhanced strain modes to give a tri-
angular element which can achieve a higher convergence in energy
and deal with the nearly incompressible plane strain problems.
However, using more degrees of freedom at the nodes limits the
practical application of those methods. For both triangular and tet-
rahedral elements, Dohrmann et al. [6] presented a weighted least-
squares approach in which a linear displacement field is fit to an
element’s nodal displacements. The method is claimed to be com-
putationally efficient and avoids the volumetric locking problems.
However, more nodes are required on the element boundary to de-
fine the linear displacement field. Dohrmann et al. [7] also pro-
posed a nodal integration finite element method (NI-FEM) in
which each element is associated with a single node and the linear
interpolation functions of the original mesh are used. The method
avoids the volumetric locking problems and performs better com-
paring to standard triangular and tetrahedral elements in terms of
stress solution for static problems.

In the other front of development, a conforming nodal integra-
tion technique has been proposed by Chen et al. [8] to stabilize
the solutions in the context of the meshfree method and then ap-
plied in the natural-element method [9]. Liu et al. have applied this
technique to formulate the linear conforming point interpolation
method (LC-PIM) [10], the linearly conforming radial point
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interpolation method (LC-RPIM) [11]. Applying the same idea to
the FEM, an element-based smoothed finite element method
(SFEM) [12,13,43] and a node-based smoothed finite element
method (N-SFEM) [14] have also been formulated. When only
the linear shape function for interpolation is used, the LC-PIM is
identical to the NI-FEM or N-SFEM using triangular and tetrahedral
elements [14]. Liu et al. [15] have provided an intuitive explanation
and showed numerically that when a reasonably fine mesh is used,
the LC-PIM has an upper bound in the strain energy. The same find-
ing is obtained for LC-RPIM and N-SFEM, meaning that the LC-RPIM
and N-SFEM also have the similar upper bound property.

Obtaining exact solution measured in a norm using a numerical
method is a fascinating idea in the area of computational methods.
So far, the mixed FEM models [16-19] based on the mixed
variational principles focus mainly to improve the accuracy of
the solution. Recently, an alpha finite element method («FEM)
using four-node quadrilateral elements has been developed for
the purpose of finding the nearly exact solution in strain energy
even for the coarse mesh [20,21]. The «FEM is a novel FEM in which
the gradient of strains is scaled by a factor o € [0, 1], and the coding
of the «FEM is almost exactly the same as the standard FEM. The
obtained result of strain energy is a continuous function of « be-
tween the solutions of the standard FEM using reduced integration
and that using full Gauss integration. The significance of this for-
mulating is two folds: (1) For overestimation problems, there ex-
ists an « € [0,1] at which the solutions of «FEM is nearly exact in
energy norm; (2) For underestimation problems, the «FEM solution
obtained at o = 0 is the closest to the exact solution in energy norm
[20,21]. Based on the function of strain energy curves and the use
of meshes with the same aspect ratio, a general procedure of the
o«FEM has been suggested to obtain the exact or best possible solu-
tion for a given problem: an exact-o approach is devised for over-
estimation problems; and a zero-« approach for underestimation
problems. The «FEM has clearly opened a novel window of oppor-
tunity to obtain numerical solutions that are exact in certain
norms. However, the «FEM based on quadrilateral elements cannot
provide exact solution to all problems. Furthermore, the use of
four-node quadrilateral elements in «FEM requires a quadrilateral
mesh that cannot be generated in a full automated manner for
complicated domains.

Making use of the upper bound property of the N-SFEM, the
lower bound property of the standard FEM in the strain energy,
and the importance idea of the «FEM for the four-node quadrilat-
eral elements, we propose a novel alpha finite element method
using three-node triangular («¢FEM-T3) elements for 2D problems
and four-node tetrahedral elements («FEM-T4) for 3D problems.
The essential idea of the method is to introduce a scale factor
o €[0,1] to establish a continuous function of strain energy that
contains contributions from both the standard FEM and the
N-SFEM. Our formulation ensures the variational consistence and
the compatibility of the displacement field, and hence guarantees
reproducing linear field exactly. Based on the fact that the standard
FEM of triangular and tetrahedral elements is stable (no spurious
zero energy modes), and so is the N-SFEM as proved by Liu et al.
[14], our «FEM will be always stable. This stability ensures the con-
vergence of the solution. Furthermore, this novel combined formu-
lation of the FEM and N-SFEM makes the best use of the upper
bound property of the N-SFEM and the lower bound property of
the standard FEM. Using meshes with the same aspect ratio, a uni-
fied approach has been proposed to obtain the nearly exact solu-
tion in strain energy for a given linear problem. The proposed
elements are also applied to nonlinear problems of large deforma-
tion. In such cases, the exact solution is usually difficult to obtain,
but the accuracy of the solution can be significantly improved.
Numerical results for 2D (using «FEM-T3) and 3D (using «FEM-
T4) problems confirm that the present method gives the excellent

performance comparing to both the standard FEM and the N-SFEM.
It is very easy to implement and apply to practical problems of
complicated geometry.

Note that the present «FEM-T3 and «FEM-T4 are very much dif-
ferent from the o«FEM for quadrilateral elements (or «FEM-Q4)
given in Ref. [20,21] in terms of both formulation procedures and
the approach. First, the «FEM-Q4 is element based and «FEM-T3
(or «FEM-T4) is both element and node based; Second, in the case
of «FEM-Q4, the strain field in the element is linear, which allows
us to scale the gradient of the strain field by introducing a scaling
factor o. In the present «FEM-T3 (or «FEM-T4), the strain field in the
element is constant, and hence it is not possible to scale the gradi-
ent of the strain field. Therefore, a new technique has to be devised
to create a desirable strain field; Third, «FEM-Q4 can only give
nearly exact solution in strain energy for overestimation problems
[20,21], while the present «FEM-T3 (or «FEM-T4) can provide
nearly exact solution in strain energy for all linear problems with-
out any post processing techniques.

The paper is outlined as follows. In Section 2, the idea the «FEM-
T3 and «FEM-T4 is briefly introduced. In Section 3, some theoretical
properties of the «FEM-T3 and «FEM-T4 are presented. Numerical
implementations are described in Section 4 and patch testes are
performed in Section 5. In Section 6, some numerical examples
are examined and discussed to verify the formulations and proper-
ties of the «FEM-T3 and «FEM-T4. Some concluding remarks are
made in the Section 7.

2. The idea of the present «FEM
2.1. Briefing on the finite element method (FEM) [22-26]

The discrete equations of the FEM are generated from the Galer-
kin weak form

/(Vséu)TD(Vsu) do - / su'hdo — / suTedr = o, )
o o e

where b is the vector of external body forces, D is a symmetric po-
sitive definite (SPD) matrix of material constants, t is the prescribed
traction vector on the natural boundary I';, u is trial functions, éu is
test functions and Vsu is the symmetric gradient of the displace-
ment field.

The FEM uses the following trial and test functions
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where NP is the number of the nodal variables of the element, d; is
the nodal displacement vector, and Ni(X) is a matrix of shape
functions.

By substituting the approximations, u" and su”, into the weak
form and invoking the arbitrariness of virtual nodal displacements,
Eq. (1) yields the standard discretized algebraic equation system:
K™d = f, (3)
where KFEM is the system stiffness matrix, f is the force vector, that
are assembled with entries of

K™ = [ B/DB;dQ, 4)
Qe

fi= [ Nf(x)bdQ+

Qe I't

N/ (x)tdr. (5)

In Eq. (4), the strain matrix is defined as
B,(X) = VSN](X) (6)

that produces compatible strain fields. Using the triangular and
tetrahedral elements with the linear shape functions, the strain
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