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a b s t r a c t

In this paper, a boundary element method employing the Laplace transform is developed to solve the
three-dimensional transient heat conduction problems. The fundamental solution for the modified
Helmholtz equation is adopted in order to derive the basic integral equations. Due to the effects of initial
temperature and heat generation, the domain integrals appearing in the integral equation will degrade
the advantages of boundary element method. Therefore, a new triple reciprocity formulation in
Laplace domain is proposed to convert the domain integrals into boundary integrals. The higher order
fundamental solutions required in the triple reciprocity method can be obtained from the original funda-
mental solution by multiplying a constant term, which leads to a much simpler formulation in the
Laplace domain. Then, the inverse transformation can be used to obtain the solutions in the time domain.
Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed
method. In summary, the triple reciprocity formulation is a useful approach to capture the transient heat
conduction responses.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Transient heat conduction problems can be efficiently solved by
the boundary integral equation (BIE) method [1]. The various solu-
tion procedures reported in the literature can essentially be classi-
fied into two broad categories: the time domain approach [1–4]
and the transform space approach [5–7]. Without the presence of
heat source and non-uniform initial temperature distributions,
transient heat conduction problems can be easily solved using
the conventional boundary element method (BEM) and internal
cells are not needed. However, the domain integral becomes neces-
sary when initial temperature distribution is not uniform and the
heat generation function is arbitrary. Both aforementioned
approaches involve the time-consuming domain integral calcula-
tions. Therefore, the advantage of dimensionality reduction is lost
in these BEM based methods. In order to avoid the domain integra-
tion, several transformation methods of the domain integral have
been proposed, including combining time-domain methods and
the transform space methods [8–12]. All those methods exhibit dif-
ferent characteristics.

The implementation of the time-domain approach is straight-
forward. The time-dependent fundamental solution (FS) is gener-
ally used as the weight function to derive the BIE [1–4]. As
discussed in the literatures about the transformation method of
the domain integral, the Green’s function from the Laplace equa-
tion is always employed [13–18]. The dual reciprocity method
(DRM), developed by Nardini and Brebbia, is typically used trans-
formation method, which is based on a set of interpolation func-
tions and their particular solutions [8,9]. Singh applied the DRM
to transform the domain integral, which is associated with the time
derivative of temperatures, to obtain transient diffusion analysis
[13]. Tanaka et al. introduced the DRM to solve the transient heat
conduction problems with both homogeneous and inhomogeneous
materials, in which the time derivative is approximated by the
time-stepping method [14]. Nowak and Neves developed the mul-
tiple reciprocity method (MRM) to convert the domain integral to
an infinite series of boundary integrals [15]. For the transient heat
conduction problem, the higher-order FS of the Laplace equation is
used and either linear or quadratic approximations are applied to
the time derivative [10]. The radial integration method (RIM) is a
new transformation approach which was developed by Gao [12].
This new approach not only can transform any complicated
domain integrals to its boundaries without using particular solu-
tions, but also can remove various singularities appearing in the
domain integrals. Yang applied the RIM to solve transient heat
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conduction problems with varying heat conductivities [16]. Based
on the RIM, Feng presented a single integral equation method to
solve the general multi-medium problems [17]. Furthermore, an
analytical expression of the radial integral was derived for efficient
computation [18]. The time-dependent FS is used as discussed in
these works [19–22]. Chen and Wang applied the singular bound-
ary method (SBM) to transient diffusion equations. This method
involves boundary only and is free of integration and mesh [19].
Wang and Chen presented simple empirical formulas for the eval-
uation of the origin intensity factors (OIFs) in the SBM for transient
diffusion problems [20]. In addition, an analytical evaluation of the
OIFs was conducted in three dimensional cases by Wang et al. [21].
Yoshihiro Ochiai proposed the triple reciprocity method (TRM), in
which the pseudo-initial temperature and/or heat sources density
are approximated by using the triple-reciprocity formulation [22].
The time-dependent FS and its higher order forms are employed
and their expressions are complex. Finally, the domain integrals
are converted to the boundary integrals. Only the boundary
elements and interior free-scattering points are needed in the
discretization model.

In the transform space approach, the time dependent issue can
be temporarily remedied using the Laplace transform. The para-
bolic heat conduction equation is transformed into a more tract-
able elliptic equation (also called the modified Helmholtz
equation). Then several BIEs, which contain different transforma-
tion parameters, are derived and solved in the Laplace space.
Finally, the inverse transformation is performed to evaluate the
physical variables in the real space [5]. Based on the Laplace trans-
form approach, Sutradhar et al. analyzed the transient heat con-
duction problems with both homogeneous and non-
homogeneous materials using the Galerkin BEM [6,7], in which
the FS of the modified Helmholtz equation is used. Zhu applied
the DRM to transform the domain integral associated with both
the temperature variation and the non-uniform initial temperature
distribution [23]. Amado et al. studied the applicability of the
Laplace transform based dual reciprocity BEM for laser heat treat-
ment model and included the nonlinear formulations due to tem-
perature dependent material properties [24]. Yu et al. derived a
new method formed by the differential transformation method
and the radial integration BEM to solve transient heat conduction
problems with functionally graded materials [25]. The FS of the
Laplace equation is used in order to derive the integral equation
as discussed in above works [23–25]. Guo developed a new multi-
ple reciprocity formulation to solve the three-dimensional tran-
sient heat conduction problems [26]. First, the FS of the modified
Helmholtz equation is used to derive the BIE. Then, the MRM, in
which the higher order FSs of the modified Helmholtz equation
and the analytic high order derivatives of the domain functions
are required, is employed to transform the domain integrals to
boundary integrals. Finally, two examples of 3-D (three-
dimensional) transient heat conduction problems, which con-
tained polynomial type initial temperature distribution and sine
type heat generation respectively, are solved by the proposed
method and the numerical results with good accuracy are
obtained. Therefore, the analytic functions of the initial tempera-
ture distribution and heat generation are necessary in MRM. How-
ever, in many engineering problems, the distribution of initial
temperature is obtained by sampling at monitoring point and can-
not be expressed analytically. Thus it is hard to get the high order
derivatives of the initial temperature.

In this paper, the Laplace transform triple reciprocity boundary
element method (LT-TRBEM) is employed to solve the transient
heat conduction problem containing uniform initial temperature
distribution or heat generation, in which the analytical functions
are not necessity. First, the Laplace transform methodology was
applied to eliminate the time-dependent issue. The FS of the

modified Helmholtz equation was used to derive the BIE in Laplace
domain. Secondly, the high derivatives of the initial temperature
field or the heat generation, which were necessities in the TRM,
were computed by solving a system of equations using original val-
ues of them at the discretized points. Thirdly, the domain integrals
were converted to the equivalent boundary integrals by employing
the TRM, which overcame the limitations of the MRM. The higher
order FSs used in TRM could be obtained from the original FS by
multiplying a constant term, which made the TRM formulation in
Laplace domain much simpler than that in time domain. Finally,
the Gaver-Wynn-Rho algorithm, which combined with the Wynn’s
rho algorithm to improve the convergence rate, was applied to per-
form the Laplace inversion. Then the results in time domain are
obtained. In addition, it should be mentioned that to avoid the dif-
ferences between the geometric model and the analysis model, our
method is implemented in the framework of boundary face
method (BFM) program. The BFM is implemented directly based
on the boundary representation data structure (B-rep) that is used
in most CAD packages for geometry modeling [4,27,28]. Each
bounding surface of geometry model is represented as parametric
form by the geometric map between the parametric space and the
physical space. Both boundary integration and variable approxima-
tion are performed in the parametric space. The integrand quanti-
ties are calculated directly from the faces rather than from
elements, and thus no geometric error will be introduced.

The remainder of this paper is organized as follows. The BIE in
Laplace domain is derived briefly in Section 2.1. The interpolation
of terms b(x) which involves the domain integrals is presented in
Section 2.2. In Section 2.3, the characteristic of the modified Helm-
holtz FS is presented. The TRM formulation in Laplace domain is
presented in Section 2.4. Section 2.5 briefly describes the Laplace
inversion and solution procedures. Some numerical examples are
presented in Section 3. Finally, concluding remarks and directions
for future research are discussed in Section 4.

2. Problem definition

2.1. The BIE in Laplace domain for transient heat conduction

Assuming isotropic material, the 3-D transient heat conduction
problem with heat generation can be represented as

r2uðx; tÞ ¼ 1
a

@uðx;tÞ
@t � 1

k wðx; tÞ: x 2 X

uðx; tÞ ¼ �uðx; tÞ: x 2 C1

qðx; tÞ ¼ @uðx;tÞ
@nðxÞ ¼ �qðx; tÞ: x 2 C2

u0ðxÞ ¼ uðx; t0Þ: x 2 X

ð1Þ

where u(x, t) is the temperature at location x and time t. w(x, t) is
the heat source density. The coefficient a and k are the thermal dif-
fusivity and the heat conductivity respectively. X stands for the
considered domain enclosed by C1 [ C2. �u and �q stand for the pre-
scribed temperature and normal flux on the boundary respectively.
u0ðxÞ is the initial conditions at time t ¼ t0.

The Laplace transform of the function u(x, t) in denoted by

~uðx; sÞ ¼ Lðuðx; tÞÞ ¼
Z 1

0
uðx; tÞe�st dt ð2Þ

Assuming that the transformation parameter s is real and positive,
the governing equation in the Laplace domain is given by

r2~uðx; sÞ � s
a
~uðx; sÞ þ 1

a u0ðxÞ þ 1
k
~wðx; sÞ ¼ 0

~uðx; sÞ ¼ �uðx; sÞ: x 2 C1

~qðx; sÞ ¼ �qðx; sÞ: x 2 C2

ð3Þ

Above equation is also called the modified Helmholtz equation.
�uðx; sÞ and �qðx; sÞ define the function values on the boundaries.
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