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a b s t r a c t

In the present paper, a simple difference method for lattice Boltzmann algorithm is proposed to simulate
conjugate heat transfer problems. In the conventional lattice Boltzmann method (LBM), the informations
including temperature and heat flux exchange directly between two different media through distribution
function during the streaming process, however, the continuity of heat flux at the interface between two
different media cannot be guaranteed in this process. Different with the conventional LBM, we consider
that the nodes near the interface get the distribution functions from the interface during the streaming
process across the interface. The distribution functions at the interface can be obtained by coupling the
interface conditions of temperature and heat flux with non-equilibrium extrapolation. Four test cases are
used to validate the present method, including both steady and transient conjugate heat transfer with flat
or curved interfaces. The results show that the present method is very easy to implement, and feasible for
both steady and transient heat transfer problems. In addition, for simplicity, by approximating the real
interface with a staircase shaped line, the present method can deal with curved interface easily and
the results show the approximation will not contribute obvious error to the final results.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Conjugate heat transfer is a very common physical phe-
nomenon which relates to numerous applications in engineering,
such as the cooling of electronic devices [1], electronic equipment
[2], the heat transport in micro fuel cells [3] and microchannels
[4,5], etc. Depending on the numerical methods for solving the
governing N-S and energy equations, various approaches have
been proposed to simulate conjugate heat transfer between two
domains of solids, solid and fluid, or fluids [6–8] with different
physical properties. The conventional numerical methods, such
as Finite Volume Method (FVM), Finite Difference Method (FDM),
and Finite Element Method (FEM) have been successfully applied
to simulate conjugate heat transfer problems. For instance, Fiebig
et al. [9] made a series of numerical simulations on conjugate heat
transfer in a finned-tube element with FVM. Ha and Jung [10]
simulated three-dimensional natural convection and conduction
problems in a differentially heated cubic enclosure with a heat-
generating cubic conducting body with FVM. By taking FDM,
Korichi and Oufer [11] made a numerical investigation on solid-
fluid conjugate heat transfer in a rectangular channel with discrete

obstacles on upper and lower walls. More systematic introduction
about conjugate heat transfer problems can be found in the review
written by Dorfman and Renner [12] and the references therein.

Based on the evolution of particle distribution functions of dis-
crete velocities, the lattice Boltzmann method (LBM) has been
developed rapidly in recent years. As proved by some previous
researchers, LBM is a very powerful and simple method in simulat-
ing the multiphase flows in fluid-fluid systems [13–16] and solid-
fluid systems [17–20]. Up to date, some researchers have tried to
spread the use of LBM from multiphase flows simulation to conju-
gate heat transfer simulations. Since the conventional LBM can
only retrieve the standard energy equation when the two different
media have the same heat capacities, some modifications are nec-
essary for more general cases when the heat capacities of the two
different media are unequal. For instance, an improved SIMPLE-like
algorithm has been adopted by some researchers to simulate con-
jugate heat transfer problems [21–23]. This method assumes that
the two different media have the same heat capacities qcp (q and
cp are, respectively, the density and the specific heat capacity at
constant pressure), therefore, is only capable for conjugate heat
transfer at steady state. Also, a kind of difference method has been
proposed [24] to deal with the conjugate heat transfer problems, in
which the continuous heat flux at the interface between two
different media can be well guaranteed. However, this method is
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confined to solids with a square shape at steady state. Recently,
some improved difference methods were proposed to eliminate
these drawbacks. Li et al. [25] proposed a new difference method
to ensure temperature and heat flux to be continuous at a curved
interface, but the difference formulas are too complex to imple-
ment, especially for the cases with complex geometry in three
dimension. Another promising difference method was proposed
by Mohamad et al. [26], in which the continuity of heat flux at
the interface is ensured by coupling temperature difference with
a new scaling law of energy distribution function. It is suitable
for both steady and unsteady conjugate heat transfer between
two different immiscible media, what confines the application of
this method is that the interface must locate at the computational
nodes. Another relative simple difference method was proposed by
Mozafari-Shamsi et al. [27], for a streaming process across the
interface in this method, the start node is replaced by a virtual
node with the same thermal properties of the end node, the tem-
perature of the virtual node is corrected to keep the continuities
of temperature and normal heat flux at the interface. Then, the
equilibrium distribution function of the virtual node can be evalu-
ated while the non-equilibrium distribution function is obtained
by a non-equilibrium interpolation, and the boundary conditions
at the interface can be ensured in this difference scheme.

In addition to the difference method, some other approaches
could be applied to deal with a conjugate heat transfer problem.
In some researches [28,29], double distribution functions were
adopted for two different media respectively. In this method, the
interfacial nodes which are the computational nodes representing
the geometry of the interface obtain the unknown local distribu-
tion functions by combing the known distribution functions,
boundary conditions and an assumption of the unknown distribu-
tion functions. However, the calculation steps for the unknown dis-
tribution functions depend on the type of interfacial nodes, which
is not simple to be implemented and harder for curved interfaces.
Another thought is to add an additional source term to correct the
influence induced by the difference of heat capacities. For instance,

Karani and Huber [30] suggested using an additional heat source
term to recover the energy equation approximately with a first-
order accuracy. This method can also be used to simulate conjugate
heat transfer with a curved interface approximately. It is very easy
to be implemented, however, introduces the jump conditions at
the interface which bring obvious deviation to the final results in
the area near the interface. Rihab et al. [31] solved the enthalpy
equation instead of the temperature equation to get the tempera-
ture field indirectly, which can make the additional source term to
be calculated easily. However, their method is only applicable for
conjugate heat transfer without convection. Recently, a novel
method for solving conjugate heat transfer problems named ‘‘vir-
tual heat capacity correction method” was proposed by Lu et al.
[32], this method firstly assumes that the solid has the same heat
capacity with fluid, like SIMPLE-like algorithm, to ensure the
boundary conditions at the interface, then correct the temperature
field at the end of each time step to get the right temperature field
at transient period. However, the method can keep convergence for
conjugate heat conduction but may suffer a stability problem in
some solid-fluid systems while the heat capacity of the fluid is lar-
ger than that of the solid.

Considering the complex geometry, and the difference of ther-
mal properties between the two sides of an interface, the numeri-
cal simulations for conjugate heat transfer are generally not easy to
be implemented with LBM. A more accurate, reliable, and simpler
lattice Boltzmann algorithm is still desired. Based on the idea of
correcting the conventional streaming process to keep the continu-
ity of heat flux, a simple difference method is proposed for lattice
Boltzmann algorithm to simulate conjugate heat transfer. In this
method, the computational nodes adjacent to the interface do
not get the distribution functions from the opposite nodes in
another medium but from the interface during the streaming pro-
cess across the interface. The distribution functions of the interface
are obtained by coupling the boundary conditions (both tempera-
ture and heat flux are continuous) with non-equilibrium
extrapolation.

Nomenclature

cL lattice speed (m=s)
cp specific heat at constant pressure (kJ=ðkg � KÞ)
cs lattice sound speed (m=s)
e
!
i discrete velocity in direction i (m=s)

f i density distribution function (kg=m3)

f ðeqÞi equilibrium density distribution function (kg=m3)
Fi discrete body force term (kg=m2 s2)

F
!

body force term (kg �m=s2)
g
!

gravitational acceleration (m=s2)
gi energy distribution function (K)
ĝi energy distribution function after collision step (K)

gðeqÞi equilibrium energy distribution function (K)

gneqi non-equilibrium energy distribution function (K)
H height (m)
k heat conductivity (W=ðm � KÞ)
N grid number in y axis
Nu average Nusselt number
Pr Prandtl number Pr ¼ m=af
Q heat source term (W=m3)
Qi discrete heat source term in direction i (W=m3)
q
!

heat flux (W=m2)
r distance to central point (m)
R radius (m)

Ra Rayleigh number Ra ¼ gbðTh � TcÞH3=taf

T temperature (K)
Th hot temperature (K)
Ta temperature of analytical solution (K)
Tc cold temperature (K)
u
!

velocity (m=s)
wi weight coefficients in direction i for D2Q5 model
x abscissa (m)
y ordinate (m)

Greek symbols
aij thermal diffusivity (m2=s)
af thermal diffusivity of fluid (m2=s)
b volume expansivity (1=K)
q density (kg=m3)
m kinematic viscosity (m2=s)
h dimensionless temperature of h ¼ ðT � TcÞ=ðTh � TcÞ
xi weight coefficients in direction i for D2Q9 model
Dt lattice time step (s)
Dx lattice space (m)
sf relaxation time of density distribution function
sg relaxation time of energy distribution function
u the angle with horizontal line
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