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a b s t r a c t

This paper deals with the time differential dual-phase-lag heat transfer models aiming, at first, to identify
the eventually restrictions that make them thermodynamically consistent. At a first glance it can be
observed that the capability of a time differential dual-phase-lag model of heat conduction to describe
real phenomena depends on the properties of the differential operators involved in the related constitu-
tive equation. In fact, the constitutive equation is viewed as an ordinary differential equation in terms of
the heat flux components (or in terms of the temperature gradient) and it results that, for approximation
orders greater than or equal to five, the corresponding characteristic equation has at least a complex root
having a positive real part. That leads to a heat flux component (or temperature gradient) that grows to
infinity when the time tends to infinity and so there occur some instabilities. Instead, when the approx-
imation orders are lower than or equal to four, this is not the case and there is the need to study the com-
patibility with the Second Law of Thermodynamics. To this aim the related constitutive equation is
reformulated within the system of the fading memory theory, and thus the heat flux vector is written
in terms of the history of the temperature gradient and on this basis the compatibility of the model with
the thermodynamical principles is analyzed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The dual-phase-lag model of heat conduction proposed in [1–3]
distinguishes the time instant t þ sq, at which the heat flux flows
through a material volume and the time instant t þ sT , at which
the temperature gradient establishes across the same material
volume:

qiðx; t þ sqÞ ¼ �kijðxÞT ;jðx; t þ sTÞ; with sq; sT P 0: ð1Þ

The above constitutive equation states, synthesizing its meaning,
that the temperature gradient T ;j at a certain time t þ sT results in
a heat flux vector qi at a different time t þ sq. In the above constitu-
tive Eq. (1), besides the explicit dependence upon the spatial vari-
able, we point out that qi are the components of the heat flux
vector, T represents the temperature variation from the constant
reference temperature T0 > 0 and kij are the components of the con-
ductivity tensor; moreover, t is the time variable while sq and sT are

the phase lags (or delay times) of the heat flux and of the temper-
ature gradient, respectively. In particular, sq is a relaxation time
connected to the fast-transient effects of thermal inertia, while sT
is caused by microstructural interactions, such as phonon scattering
or phonon-electron interactions [4]. In addition to the thermal con-
ductivity, the phase lags sT and sq are treated as two additional
intrinsic thermal properties characterizing the energy-bearing
capacity of the material.

Eq. (1) describing the lagging behavior in heat transport, when
coupled with the energy equation

�qi;iðx; tÞ þ .ðxÞrðx; tÞ ¼ aðxÞ @T
@t

ðx; tÞ; ð2Þ

displays two coupled differential equations of a delayed type. Due
to the general time shifts at different scales, sT and sq, no general
solution has been known yet. The refined structure of the lagging
response depicted by equations (1) and (2), however, has been illus-
trated by Tzou [3] by expanding Eq. (1) in terms of the Taylor’s ser-
ies with respect to time:

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.06.071
0017-9310/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: schirita@uaic.ro (S. Chiriţă), mciarletta@unisa.it (M. Ciarletta),
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An interesting discussion concerning this expansion has been devel-
oped by Tzou [3] when n�m ¼ 0 or n�m ¼ 1, relating the progres-
sive interchange between the diffusive and wave behaviors.

We emphasize that the related time differential models
obtained considering the Taylor series expansions of both sides
of the Eq. (1) and retaining terms up to suitable orders in sq and
sT (namely, first or second orders in sq and sT) have been widely
investigated with respect to their thermodynamic consistency as
well as to interesting stability issues and wave propagation (see,
for example, [5–9]). However, the general form of the time differ-
ential dual-phase-lag model as given by (3) wasn’t treated up to
now, except for the paper by Quintanilla and Racke [10], where
the spatial behavior is studied for solutions of the equation
obtained by eliminating the heat flux vector between the constitu-
tive Eq. (3) and the energy Eq. (2), provided n ¼ m or n ¼ mþ 1.

The main purpose of this paper is to study the thermodynamical
andmechanical consistency of the constitutive Eq. (3).We infer that
the feasibility study of this constitutive equation greatly depends on
the structure of the differential operators involved in its mathemat-
ical expression. In fact, if we consider the constitutive Eq. (3) as an
ordinary linear differential equation in terms of the unknown func-
tion qiðtÞ (or, equivalently, in terms of the unknown function T ;iðtÞ)
then we can observe that for n P 5 (or m P 5) it admits at least a
complex root having a positive real part. That implies that qiðtÞ (or
T ;iðtÞ) can tends to infinity when the time tends to infinity and so
we are led to instability situations. On this way we conclude that
the time differential dual-phase-lag model based on a constitutive
equation of type (3) with n P 5 orm P 5 cannot be considered able
to describe realmechanical situations. Instead, when n ¼ 0;1;2;3;4
andm ¼ 0;1;2;3;4 this is not the case andwehave to study the ther-
modynamic consistency of the correspondingmodel. To this aimwe
follow [6,11] and we reformulate the constitutive Eq. (3) in such a
way that theheatfluxvectorqi dependson thehistoryof the temper-
ature gradient. In this sense we rewrite the Eq. (3) in the framework
of Gurtin and Pipkin [12] and Coleman and Gurtin [13] fadingmem-
ory theory, and on this basis we analyze the compatibility of the
model with the thermodynamical principles. Precisely, the thermo-

dynamic consistency of the model in concern is established when
ðm;nÞ 2 fð0;0Þ; ð1;0Þ; ð0;1Þ; ð2;1Þ; ð1;2Þ; ð2;2Þ; ð3;2Þ; ð2;3Þ; ð3;3Þ; ð3;4Þ;
ð4;3Þ; ð4;4Þg, provided appropriate restrictions are placed on the delay
times.

2. Thermomechanical consistency of the model

In this Section we consider the Eq. (3) as an ordinary linear non-
homogeneous differential (in time variable) equation in terms of
the heat flux vector components and observe that its characteristic
equation is

1
n!
snq k

n þ 1
ðn� 1Þ! s

n�1
q kn�1 þ � � � þ 1

2!
s2q k

2 þ 1
1!
sq kþ 1 ¼ 0: ð4Þ

This equation is connected with the partial sums of the Maclaurin
series for the exponential function ez and with the incomplete
gamma function and its roots have been intensively studied in liter-
ature (see e. g. Eneström [14–17]). On the basis of the Eneström-
Kakeya theorem it follows that all the roots of the Eq. (4) lie outside
of the disk of radius 1

sq. Moreover, the Eq. (4) has no real root if n is

even, while when n is odd, it has only one real root. However, here
we are interested if this equation has at least a complex root with a
positive real part. To this aim we outline the results obtained by
Gábor Szegö [18] and Jean Dieudonné [19] who showed that the
roots of the scaled exponential sum function approach the portion
of the Szegö curve: jz expð1� zÞj ¼ 1 within the unit disk as
n ! 1. Moreover, with the aim to visualize this result for n P 5
we recommend the simulation for the software package Wolfram
Mathematica 11 presented in the Appendix (see also the Fig. 1).

Fig. 1. Roots of the exponential sum for n ¼ 4 and for n ¼ 5.

Table 1
The values of x ¼ sqk with k solution of the
characteristic Eq. (4) for n ¼ 1;2;3;4.

n x ¼ sqk

1 �1
2 �1:0� 1:0 i

3 �1:5961
�0:70196� 1:8073 i

4 �0:27056� 2:5048 i
�1:7294� 0:88897 i
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