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a b s t r a c t

The primary objective of this short work is the identification of alternate routes for the determination of
exact and numerical solutions of the Navier-Stokes equations in the specific case of surface-tension dri-
ven thermal convection. We aim to elaborate a theoretical approach in which the typical kinematic
boundary conditions required at the free surface by this kind of flows can be replaced by a homogeneous
Neumann condition using a class of ‘continuous’ distribution functions by which no discontinuities or
abrupt variations are introduced in the model. The rationale for such a line of inquiry can be found (1)
in the potential to overcome the typical bottlenecks created by the need to account for a shear stress bal-
ance at the free surface in the context of analytic models for viscoelastic and other non-Newtonian fluids
and/or (2) in the express intention to support existing numerical (commercial or open-source) tools
where the possibility to impose non-homogeneous Neumann boundary conditions is not an option.
Both analytic solutions and (two-dimensional and three-dimensional) numerical ‘‘experiments” (con-
cerned with the application of the proposed strategy to thermocapillary and Marangoni-Bénard flows)
are presented. The implications of the proposed approach in terms of the well-known existence and
uniqueness problem for the Navier-Stokes equations are also discussed to a certain extent, indicating
possible directions of future research and extension.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Gravitational and surface-tension driven convection in fluid-
filled enclosures has received considerable attention over the past
several years due to its relevance to the engineering design of
advanced technology. These applications (of practical or prototyp-
ical natures, too many to be cited here) span such diverse fields as
electronic industry, cooling plants, coating processes, organic and
inorganic crystal growth, etc. [1–5].

Leaving aside for a while applicative aspects, such subjects have
also attracted significant academic interest. Indeed, the instabilities
of these flows and related hierarchy of bifurcations are irresistible
to researchers and scientists because of the variety of patterns and
related spatio-temporal evolution. Such features are often aesthet-
ically pleasing and ‘‘philosophically” challenging (because of their
implications in the development of a general theory for the dynam-
ics of non-linear systems). Much interest also comes from the well-
known inherent difficulties in elaborating predictive models able
to provide information on such characteristics ‘‘a priori”.

One way to mitigate this drawback is to introduce a preliminary
classification of the possible regimes and related solutions on the
basis of the thermal and mechanical boundary conditions affecting
the considered problem. A mathematical formulation of all such
aspects leads to the so-called initial-boundary value problem (IBVP)
where the governing balance equations for mass, momentum and
energy have to be solved together with the related initial and
boundary conditions. In turn, this requires implicitly the adoption
of a given solution strategy, be it analytical, approximate or
‘‘numerical”.

By analytical approach we mean one of the standard methods
for classical partial differential equations (the obvious outcome
of such a process being an algebraic expression relating the depen-
dent variables to the independent variables, see, e.g., Ostroumov
[6], Birikh [7,8], Gershuni and Zhukhovitskii [9], Belghazi et al.
[10], Lappa [11], Lappa and Ferialdi [12]). An approximate method
results when the governing boundary value problem is solved
using a series-expansion-based technique (see, e.g., Jane [13],
Jebari et al. [14], Al-Saif et al. [15]) or a transformation is used,
based on the introduction of a similarity variable, by which the
original partial differential equations are replaced by a set of cou-
pled nonlinear ordinary differential equations (e.g., Makinde and
Olanrewaju [16]). Finally, by numerical solution here we refer to
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the discrete set of nodal values that is obtained when the IBVP is
integrated numerically (by discretizing the equations over a com-
putational grid, see, e.g., [17–33]).

Unlike the analytical approach, however, none of these approx-
imate numerical methods is able to yield a closed expression for
the velocity in the flow in terms of driving forces involved and con-
ditions at the system boundary.

This is the main reason for which analytic solutions of Maran-
goni convection have enjoyed a widespread use in the literature
as a paradigm model for establishing (in general) a theoretical
foundation to the field of surface-tension driven flows and (in par-
ticular) for explaining some of the typical manifestations of this
kind of convection in practical situations.

These flows are known to undergo a variety of instabilities
when the characteristic parameter (the so-called Marangoni num-
ber) exceeds one or more thresholds. Analytic solutions have
allowed gaining outstanding insights into such behaviors due to
their natural ‘‘ability” to be used as initial conditions (the so-
called ‘‘basic flow”) for straightforward application of linear-
stability-analysis (LSA) techniques.

By contrast, when such a flow has to be determined numeri-
cally, the typical protocols of LSA require the solution of an eigen-
value problem of very high order (in practice, the order of this
problem is equal to the amount of scalar unknowns used to repre-
sent the solution numerically, namely, a number given by the pro-
duct of the number of unknown functions and the number of
discretization elements, i.e. grid points, control volumes or finite
elements effectively used).

Given such premises, it is really difficult to imagine how our
understanding of these flows and their instabilities could have
flourished without the availability of analytic solutions. Indeed,
studies of buoyancy and Marangoni flow have historically pro-
gressed through the introduction of a precise hierarchy of models
with increasing complexity where new knowledge was iteratively
produced on the basis of the intuition developed on the basis of
earlier simpler models. As an example, this approach proved extre-
mely useful in the development of a general theory of flow bifurca-
tion and turbulence [34–45].

Before being impressed by the power of this idea, however, we
have to warn that the derivation of analytical solutions to the
Navier-Stokes equations is an extremely hard task. Indeed, only a
very limited set of exact solutions is known (most of such solutions
were originally published in a number of Soviet-Union journals,
hardly accessible in the western world, and for this reason many
of them have been ignored for a long time, see, e.g., Ostroumov
[6]).

Technically speaking, in general, it is possible to find or ‘‘build”
analytical solutions when the convective terms in the governing
equations, namely the main sources of non-linearity, vanish natu-
rally. Towards this end, some specific simplifications can be consid-
ered such as a reduction of the number of space dimensions
involved or the ‘‘removal” of physical boundaries along certain
directions (ideally assumed to be located at an infinite distance
where they are not able to influence the ‘‘core” flow).

Despite these assumptions, however, significant drawbacks
opposing to the straightforward determination of results in analyt-
ical form persist. For Marangoni flow an additional bottleneck is
represented by the need to satisfy a non-homogeneous kinematic
boundary condition at the free interface, which should be regarded
as the main motivation for which further developments in this
field have been relatively limited. This is especially true for the
case of non-Newtonian fluids, for which such a boundary condition
(a shear stress balance) becomes particularly complex and
cumbersome because of the presence of other (e.g., viscoelastic)
stresses in the fluid (in addition to the standard Newtonian and
thermocapillary ones). Among other things, the non-

homogeneous nature of this boundary condition has acted in many
circumstances as a kind of ‘‘barrier” limiting the utilization of
widespread commercial or open-source CFD tools (such as Open-
Foam). Though many of such computational tools are equipped
with a variety of functions and models (including the possibility
to simulate viscoelastic fluids), often they lack the possibility to
implement kinematic boundary conditions such as those that
would be required to simulate thermal Marangoni convection.

Motivated by this observational tide, the main aim of the pre-
sent analysis is to propose widening the range of methodologies
to be potentially used to treat this kind of flows. In particular, we
further develop and expand the approach originally introduced
by Tiwari and Nishino [46] about the possibility to turn the
stress-balance Marangoni condition at the liquid-gas interface into
an equivalent condition or source term to be added directly to the
momentum equation as it was a force of buoyancy nature.

2. Governing equations

For simplicity, we build our framework on the assumption that
the flow is laminar, steady and incompressible with constant
properties.

2.1. Nondimensional form

In order to derive analytic solutions in the most general form,
obviously, the governing equations have to be put in a non-
dimensional shape. Here we consider the typical (most general)
choice of characteristic reference quantities for thermal convection
[47,48]; namely, we scale lengths, velocity, time and pressure by d,
Va = a/d, d2/a and qa2/d2, respectively, where d is a reference dis-
tance, a is the fluid thermal diffusivity (and q its density), and Va is
the energy diffusion velocity. Moreover, we subtract a reference
value To to the temperature, while scaling it by a reference temper-
ature difference DT. This approach leads to cast the mass, momen-
tum and energy balance equations as:

r � V ¼ 0 ð1Þ

@V
@t

þr � ½VV � þ rp ¼ Prr2V þ Fb ð2Þ

@T
@t

þr � ½VT� ¼ r2T ð3Þ

where V, p and T are the non-dimensional velocity, pressure and

temperature respectively (the so-called ‘‘primitive variables”), Fb
is a generic body force (e.g., buoyancy), and Pr is the Prandtl number
(Pr = m/a and m is the constant fluid kinematic viscosity m = l/q).

To put the work in perspective, in the next two sections we
illustrate the differences between classical approaches imple-
mented in the past and the present one.

2.2. Classical analytic solutions for marangoni flows

As the resulting framework is not restricted to a specific geom-
etry or model, without loss of generality we concentrate on the
classical case of parallel flows [7,40].

As shown in Fig. 1, initially we consider a laterally unbounded
horizontal layer of liquid delimited from below by a solid wall
and from above by a liquid-gas interface. The horizontal bound-
aries are assumed to be located at y = �1/2 and 1/2, respectively.
Moreover, there are no velocity components along y and z
(v = w = 0) while the component along x depends on the vertical
coordinate y only, i.e. u = u(y). The temperature undergoes a linear
increase along the horizontal coordinate x (with a constant rate of
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