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a b s t r a c t

At the onset of stationary convection, the effect of a vertical magnetic field on the heat transfer of
Rayleigh-Benard convection for an electrically conducting fluid is studied. The nonlinear governing equa-
tions describing the motion, temperature and magnetic fields are expanded as the sequence of non-
homogeneous linear equations, which depend on the solutions of the linear stability problem. Infinite
number of steady state with finite amplitude solutions are obtained for the stress-free boundary condi-
tions. The perturbation method proposed by Kuo (1961) is used for the first time to highlight the heat
transfer features of magnetoconvection. An explicit expression at the onset of convection in terms of
parameters of the system is obtained. The dependence of heat transfer rate on Rayleigh number (R),
Chandrasekhar number, thermal and magnetic Prandtl numbers is extensively examined until sixth order
using an expansion of R as proposed by Kuo (1961). The results show that the magnetic field dampens the
heat flow for stationary convection, i.e., the onset of convection shifts to higher values of R as the vertical
magnetic field increases. Under the uniform magnetic field, heat flow gets enhanced as the thermal
Prandtl number increases, whereas heat flow diminishes for the increase in magnetic Prandtl number.
The results of flow field and heat transfer characteristics are depicted in the form of streamlines and iso-
therms, respectively. The presence of magnetic field changes the flow structure of streamlines from uni-
cellular to multicellular patterns. This is due to the magnetic susceptibility of colder fluid flow towards
the magnetic field. The flow field is analyzed with respect to the topological invariant relation. To trace
the path of convective heat transport, the concept of Heatfunction has been employed. This methodology
explains the comprehensive interpretation of energy distribution in terms of heatlines.

� 2017 Published by Elsevier Ltd.

1. Introduction

An electrically conducting fluid confined between two
horizontal plates and heated from below in the presence of a ver-
tical magnetic field is the simplest geometry to study the magneto-
convection. The interaction between the thermal convection and
the magnetic field, known as magnetoconvection, produces the
Lorentz force, which resist the horizontal motion of fluid. Such type
of motion occurs at the onset of natural convection. This convec-
tion with isothermal boundaries and no internal heat sources is
governed by the non-dimensional parameter, namely, the Rayleigh
number, R. There are two aspects of interaction between the

magnetic field and the convection: on the one hand, the motion
sweeps the magnetic flux aside and concentrates it in the isolated
tubes or sheets; on the other, the Lorentz force affects, and may
suppress the pattern of convection, thus, the fluid motion is more
stable. Also, due to the presence of this force the corresponding R
for the onset of convection increases.

The early research interest of magnetoconvection is mainly
motivated by the geophysical and astrophysical applications and
in particular the study of the existence of sunspots in an imposed
magnetic field. It is necessary to understand the effects of the Lor-
entz force in convective motions of many astrophysical and geo-
physical problems. At the surface of the Sun, magnetic fields
have high intermittent structures. Most of the flux is confined to
tubes in which these fields are intense; in larger features, such as
sunspots, heat transport is partially inhibited by the magnetic field.
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Generally cosmical magnetic fields are associated with turbulent
motions, which may be due to convection. Similar theoretical stud-
ies of magnetoconvection within the framework of Boussinesq
approximation have got inspired primarily by the existence of sun-
spots such as the formulation of linear problem at the onset of con-
vection [2–6]. These studies motivated several researchers to
investigate the suppression of convection by strong magnetic field
[7–12]. The potential use of a magnetic field to control fluid flow
and heat transfer in conductive fluids has long been recognized
in many applications such as crystal growth, metal casting, liquid
metal cooling blankets for fusion reactors, electric propulsion for
space exploration, electronic packages, microelectronic devices
and others. The liquid metals are characterize by their much larger
magnetic diffusivity (g) in comparison with their thermal diffusiv-
ity (j), i.e., in the limit of g� j. These metals are used to study the
low Prandtl number fluids (Pr1 ’ 10�2). In these fluids, the two
dimensional steady roll structures at the onset of convective flow
easily become time dependent just above the critical stationary
Rayleigh number, Ro. Apart from the low Prandtl number fluids
recently several authors have investigated the effect of magnetic
field on nanofluids [13–19].

Usually magnetic field effect is governed by the Chandrasekar
number, Q. Using the linear stability analysis, Chandrasekar [2,3]
showed that the Ro, increases with the increase in Q. He also dis-
cussed another important effect of vertical magnetic field, namely,
dampening of the rate of heat transfer with the increase of mag-
netic field. These results are experimentally confirmed by Naka-
gawa [4,5].

Busse and Clever [10] discussed theoretically the stability of
convective roll in the presence of a vertical magnetic field with
rigid-rigid boundary conditions, for low Pr1. It is observed that
the presence of magnetic field tends to increase the efficiency of
convective heat transport and thereby compensating in part for
the delay at the onset i.e., of convection caused by the stabilizing
effect of the Lorentz force. These results are experimentally
obtained by Ulrich Burr and Ulrich Muller [20]. Also it is observed
that the fluctuations in the temperature field get damped signifi-

cantly by the presence of magnetic field. Cioni et al. [21] confirmed
that their experimental threshold of convection was in agreement
with linear stability theory [2,3] until Q ffi 4� 106. This Q value is
higher than that of the previous experiments carried out by Naka-
gawa [4,5]. The main focus of the experiments was the character-
ization of turbulent magnetohydrodynamics (MHD) regimes
occurring beyond the threshold. They have characterized two con-
vective regimes influenced by the MHD effect, namely, in one
regime the heat transfer rate or Nusselt number, N, is proportional
to R, whereas in the second regime for the higher R;N ffi R0:43. The
measurement of N as a function of R and Pr1 in cylindrical rolls for
heat transport in turbulent RBC experimentally studied by Ahlers
et al. [22]. It is shown that when R is constant, N varies with Pr1
only by about two percent in the range of 4 < Pr1 < 34. This result
contradicts with previous studies of Grossmann and Lohse [23]
who have shown that this variation is about 20%. Most of the
experimental studies on liquid metal convection have focused on
the measurement of heat transport of the system and the temper-
ature fluctuations at different points in the liquid layer related to
the turbulence [24–26].

It can be noted that the above authors have studied magneto-
convection with rigid-rigid boundary conditions. Many researchers
such as Biki and Karakisawa [27], Knobloch et al. [28], Knobloch and
Proctor [29], Proctor and Weiss [30], Knobloch and Weiss [31] and
Rucklidge [32] have studied a similar problem with stress free
boundary conditions to explore the root of transition to chaos with
respect to N. They derived a fifth-order ordinary differential equa-
tions model from a Galerkin truncation of the relevant partial dif-
ferential equations and studied its properties both analytically
and numerically for Pr2 > Pr1 and Roc < Ro. Knobloch, Proctor, Ruck-
lidge, andWeiss (hereafter referred to as KPRW) have criticized the
work done by Biki and Karakisawa (hereafter referred to as BK) [27].
The response of BK on criticisms of KPRW is published [33]. On the
other hand BK have also criticized the work of KPRW. The response
for these comments by KPRW is also published [34].

Theoretically Malkus et al. [35] expanded the nonlinear equa-
tions describing the fields of motion and temperature in a

Nomenclature

A amplitude
a wavenumber
ao critical wavenumber
d depth of the convection zone
g gravitational field vector
H external magnetic field vector
H0 external magnetic field along Z-axis
H Heatfunction
HX ;HY ;HZ

components of magnetic field
J current vector
L linear operator
N nonlinear operator
N Nusselt number
Nð2Þ;Nð4Þ;Nð6Þ second, fourth, sixth order Nusselt numbers,

respectively
NL local Nusselt number
P effective pressure
p growth rate
Pr1 thermal Prandtl number
Pr2 magnetic Prandtl number
Q Chandrasekar number
R Rayleigh number
Rs stationary Rayleigh number

Roc critical oscillatory Rayleigh number
Ro critical stationary Rayleigh number
T temperature
Ts static temperature
To reference temperature
DT temperature difference between upper and lower layers
t time
V velocity vector
u; v;w velocity components along X, Y, Z directions, respec-

tively

Greek symbols
a coefficient of thermal expansion
b adverse temperature gradient
j coefficient of thermal diffusivity
m viscosity
qo reference density
lm magnetic permeability
g magnetic diffusivity

Superscript
0 variables with dimension
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