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a b s t r a c t

Different from the gray model for phonon transport, the non-gray model takes account of the dispersion
and polarization of phonons. Under the consideration of the real dispersion curve, the phonon transport
in micro and nanoscale devices is intractable multiscale problem. On the basis of previous work about
gray model for phonon transport by a discrete unified gas kinetic scheme (DUGKS), we extend the
DUGKS to solving non-gray transport determined by the frequency-dependent phonon Boltzmann equa-
tion. The extension is straightforward due to the intrinsic multiscale property of the DUGKS. Four classic
test cases, cross-plane heat conduction, in-plane heat conduction, one-dimensional transient thermal
grating problem and two-dimensional steady phonon conduction are used to validate our scheme.
Numerical results show that the present scheme can accurately capture ballistic-diffusive transport phe-
nomenon in a wide range. This method may provide a powerful numerical tool for a deep research into
nanoscale and microscale heat transport.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that conventional thermal conduction in solids
is governed by the well-established, phenomenological Fourier
Law regardless of the details of thermal energy carriers. However,
with the rapid development of micro- and nanofabrication and
nanotechnology, the characteristic domain size of interest becomes
comparable to or smaller than the mean free path of the heat car-
riers, and the process characteristic time becomes comparable to
or smaller than the relaxation time of the heat carriers. In such
cases, Fourier’s law is confirmed to be invalid for heat transport
[1,2]. Phonons, the primary energy carriers in non-metallic solids
and most semiconductors, play an important role in theoretical
understanding of physical mechanics of thermal transport in these
cases. In the last decades, much attention has been paid to the
prediction of thermal conductivity of nanostructures composed
of silicon, germanium or graphene [3–7]. Interest in the simulation
of phonon-mediated heat transport has led to the development of a
variety of models, among which kinetic modeling based on the
phonon Boltzmann transport equation (pBTE) is widely believed
to be the most suitable one accounting for classical size effects.
Since microscopic methods (e.g. molecular dynamics, first-
principle, lattice dynamics, etc.) are computationally intensive

and time-consuming, mesoscopic approaches based on the solu-
tion of the pBTE offer a reasonable balance between accuracy
and complexity.

However, even so, it is not easy to solve the pBTE in its most rig-
orous form due to its high dimensionality, intractable collision
term and nonlinear phonon dispersion relation. In early studies
or even recent studies [3,4,8–11], a single relaxation-time approx-
imation is made and the physics of phonons is neglected, i.e., no
dispersion and no polarization is considered. The resulting model
is often called gray model. The gray model uses Debye approxima-
tion where the relationship between phonon frequencies and
wavelengths is linear. The Debye approximation also suggests that
the group velocity of phonon is frequency-independent and the
material is of isotropy. However, it is well known that phonon dis-
persion relations are nonlinear for silicon and other low dimension
materials. Such an oversimplification may make the gray model
inexpensive but not too accurate. Semi-gray model (also called
two-fluid model) intends on improving the accuracy of the gray
model and keep the low computational requirement [12]. Phonons
in semi-gray model are divided into two groups, propagating mode
phonons (longitudinal acoustic phonons accounting for transport
effects) and reservoir mode phonons (transverse acoustic phonons
and optical phonons accounting for capacitative effects). The semi-
gray model is less practical because it is a primarily gray model in
some sense [13] and two unknown constants (the group velocity
and relaxation time) need to be determined. Therefore, it is still
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very necessary to tackle frequency-dependent pBTE to incorporate
more physics contained in the nonlinear dispersion relations.

From the point of view of a modeling and simulation, solving
spectral pBTE is a non-trivial task. One of the biggest challenges
is how to deal with frequency/wave-number of phonons and their
interactions. In other words, this problem is a multiscale problem
covering a wide range of Knudsen number which is defined as
the ratio of the mean free path to the characteristic length. Exten-
sive efforts have been devoted to the multiscale transport in the
last two decades. Traditional Monte Carlo method (MCM) and its
variants have achieved a great success in phonon transport with
the non-linear dispersion curve [14–18]. The advantage of the
Monte Carlo method is that it is tractable and almost linearly scal-
able for large number of dimensions, and is amenable to address-
ing complex physics via interactions between the stochastic
samples. The shortcoming of this method is that it is born with
stochastic statistical uncertainty, what’s worse, the computational
efficiency of the MCM is quite low in or near the diffusive regime
due to the time step restriction. Other particle-based and stochas-
tic methods concerning phonon transport include energy-
conserving dissipative particle dynamics, a coarse-grained molecu-
lar dynamics [19]. As for the efforts in grid-based methods, Min-
nich and Chen numerically solved the transient one-dimensional
frequency-dependent BTE including polarization by using discrete
ordinates methods [20]. The finite element analysis is applied to
solving ballistic–diffusive phonon heat transport with advance-
ment of computing power [9,21]. In order to improve computa-
tional efficiency, hybrid discrete ordinates—spherical harmonics
method is designed carefully by Mittal and Mazumder based on
the ballistic-diffusive equation. Finite volume solution to the pBTE
with mode-dependent phonon properties was developed by Naru-
manchi et al. [13,22] and their method shows excellent perfor-
mance in the sub-micron regime. But the calculations of the
equilibrium distribution function are not self-consistent. Besides,
the convergence issues may make it unsuitable for large domain
simulations [23]. Donmezer and Graham [[24] conducted another
finite volume simulation and their multiscale model is valid only
in diffusive regime and weakly quasi-ballistic regime. Note that
most of the finite volume solutions reported in recent years are
concerned with the intensity-based Boltzmann transport equation
[25–27]. In the present work, we focus on the energy-based form.
Different phonon lattice Boltzmann models have been used to sim-
ulate various phonon transport phenomena in the recent years
[28–34]. In spite of their successes, to the best of the authors’
knowledge, there are still several inherent issues more or less such
as the coarse temperature in ballistic regime [32,33], and the
inconsistencies between isotropic property and the anisotropy lat-
tice speed [31,35].

Discrete unified gas kinetic scheme (DUGKS), proposed by
Zhaoli Guo and his collaborators in 2013 [36], is an asymptotic-
preserving (AP) scheme and works efficiently and accurately for
multiscale problem. The DUGKS is originally designed for kinetic
equations based on finite volume method (FVM). The key point
for success of DUGKS is the coupled treatment of transport and col-
lision in the flux construction at the cell interface. This is distin-
guished from many single scale operator splitting methods,
where the transport and collision are numerically treated sepa-
rately. DUGKS has successfully overcome the time step restriction
by the collision time. A number of gas flows ranging from subsonic
to hypersonic regimes in different Knudsen numbers have been
well resolved by this approach [37]. Recently, Zhaoli Guo and
Kun Xu [38] employed the DUGKS to solve the pBTE based on dis-
crete ordinate method, and their results show that the DUGKS per-
form excellently in both diffusive regime and ballistic regime.
However, they do not consider the frequency dependence of the
distribution function, relaxation time, and group velocity. So the

objective of the present work is to develop DUGKS to numerically
solve the pBTE considering dispersion and polarization effects.

The rest of the paper is organized as follows. The next section is
devoted to the detailed methodology and implementation of the
DUGKS for non-gray model. In Section 3, the approach is validated
with various numerical tests including cross-plane heat conduc-
tion, in-plane heat conduction, one-dimensional transient thermal
grating problem and two-dimensional phonon transport problem.
Finally, the conclusions are drawn in Section 4.

2. Methodology

2.1. Phonon Boltzmann transport equation

The energy-based Boltzmann transport equation for phonons in
the single frequency-dependent relaxation-time approximation is
[20,39,40],

@gx;pðx; s; tÞ
@t

þ vx;ps � rgx;pðx; s; tÞ ¼
geq
x;pðTÞ � gx;pðx; s; tÞ

sx;p
; ð1Þ

where gx;pðx; s; tÞ ¼ �hxDðx; pÞ½f ðx;x;p; s; tÞ � f BEðx; TrefÞ� is the
desired deviational distribution function, geq

x;pðTÞ is the equilibrium
deviational distribution function defined below, vx;p is the phonon
group velocity, and sx;p is the overall relaxation time due to all scat-
tering processes in combination. Here, x is the spatial vector, s is the
directional unit vector, t is the time, x is the phonon radial fre-
quency, T is the local temperature and p refers to phonon polariza-
tion or phonon mode. f ðx;x;p; s; tÞ is the distribution function of an

ensemble of phonons. f BEðx; TrefÞ is the Bose-Einstein distribution
function at the given temperature. The second term in the left hand
of Eq. (1) is convective term, the term in the right hand of Eq. (1)
result from collision. Assuming that the temperature difference
throughout the domain is much less than the reference tempera-
ture, jDTj ¼ jT � Tref j � Tref , the equilibrium deviational distribu-
tion is proportional to DT [20],

geq
x;pðTÞ ¼ �hxDðx; pÞ½f BEðx; TÞ � f BEðx; TrefÞ� � Cx;pDT: ð2Þ

where �h is Planck’s constant divided by 2p, Dðx;pÞ is the phonon

density of states per unit volume, and Cx;p ¼ �hxDðx; pÞ @f BE

@T is the
mode specific heat. The small temperature differences offer accept-
able error and significant simplification in linear response regime
though it is not indispensable [16]. The small temperature differ-
ences also suggest that the properties of phonon is independent
of the local temperature, that is, the relaxation time sx;p and specific
heat Cx;p can be evaluated at the reference temperature Tref. The
general law of energy conservation requires the integration of the
right hand of Eq. (1) always equal to zero,

X
p

Z xmax;p

0

Z
4p

geq
x;pðTÞ � gx;pðx; s; tÞ

sx;p
dXdx ¼ 0; ð3Þ

where X is the solid angle in spherical coordinates and xmax;p is the
maximum frequencies corresponding to a given polarization p. Sub-
stituting Eq. (2) into Eq. (3) and rearranging Eq. (3), we can obtain

DT ¼ 1
4p

P
p

Rxmax;p

0

R
4p

gx;pðx;s;tÞ
sx;p

dXdxP
p

Rxmax;p

0
Cx;p

sx;p
dx

: ð4Þ

Since the deviational distribution function is a function of direc-
tion and frequency, the above equations must be solved for all
directions and frequencies, and summed over all directions, fre-
quencies, and polarizations. Although this may be more compli-
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