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a b s t r a c t

The paper deals with the development of convective flows in a complex system of thin liquid layers
occurring under the effect of thermal load. To study this process a mathematical model which is based
on the decomposition of complex problem into unitary elements (modules) with some set of rules allow-
ing their linkage with each other was constructed. Each module represents a monotypic local model. The
fluid flow and heat transfer in each of these modules are described by the Navier-Stokes and thermal con-
ductivity equations. The boundary conditions required to solve these systems of equations are repre-
sented explicitly and written in the form of conservation laws. The numerical analysis of effect of
thermal load on the characteristics of the liquid layers movement depending on the Marangoni number
is carried out. It is shown that physical and thermophysical properties of liquid layers play the decisive
role. It is exactly they control the convective flows in layers and determine the position and shape of
interfaces. The results of model problem solutions are presented.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Study of convective flows and interfaces in a complex system
of thin liquid layers is very important due to the significance
of problems, which are related to a broad industrial application
of thin liquid layers (films). The continuous development of
science-intensive technologies significantly expands the range of
problems associated with mathematical modeling of the convec-
tion processes of viscous heat-conducting liquids. In this regard,
the number of publications and even reviews on this subject is
so great (and it is increasing every year) that their list is endless.
Depending on the set goal, the authors use different approaches
to both the description of the processes occurring in thin layers
of viscous liquid, and the numerical solution of the arising tasks.
Here, the correctness of the selection of an appropriate model
describing the phenomenon under study is, of course, of decisive
importance.

Mathematical models for describing the processes of mass and
heat transfer require correct conditions at the interfaces of liquids.
Especially in the case of convective currents of two or more liquid
mediums contacting at deformable interfaces. One of the difficul-
ties in solving problems with deformable boundaries is that along
with the unknown flow characteristics, it is also necessary to
determine the position of the interfaces which change during the
motion.

System-based derivation of conditions at the interface between
two immiscible liquids under nonisothermal unstable flow was
first given in [1]. The modification of these considerations is given
in [2]. The purpose of this work, which can be considered as a con-
tinuation of the work [3], is the construction of a mathematical
model for studying the processes arising in a system consisting
of any finite number of thin liquid layers with deformable inter-
faces. This mathematical model is formulated on the basis of
known hypotheses about the physical processes provided by the
implementation of conservation laws. It allows us to investigate
a wide range of problems associated with the impact of tempera-
ture or surfactants on a multilayer system. All the boundary condi-
tions for solving local tasks in each liquid layer are presented in
explicit form. The structure of the model allows it to expand by
adding to it new data on the physical processes ensured the imple-
mentation of conservation laws.

The idea of constructing a model is based on the decomposition
of complex problem into unitary elements (modules) with some
set of rules allowing their linkage with each other [4]. Each module
represents a monotypic local model, within which the calculation
is carried out independently of the other modules of the system,
while the ‘‘set of rules” defining, for example, the common bound-
aries between the modules and the corresponding functional rela-
tions, allow connecting these modules back to the original system.
In this case the decisive role is played by physical parameters and
thermophysical properties of liquid layers, which control the con-
vective flows in the layers and determine the position and shape of
interfaces.
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2. Mathematical model

Consider a multilayer system consisting of thermally-
conductive immiscible liquid layers as shown in Fig. 1. Here Gi

are liquid layers, fj (t,x) are the interfaces between them. The bot-
tom layer is lying on a solid substrate f Jðt; xÞ, the top layer is in con-
tact with the air through the interface f0 (t,x); at the left and right
the system of layers is bounded by two solid planes x = 0 and x = L.
Each liquid layer Gi is characterized by its thickness hi, density qi,

kinematic viscosity mi and surface tension coefficient riðTÞ.
Moreover, the evaporation and condensation processes are not
taken into account in this model; qi and mi are considered to be
constant.

Such a complex system of immiscible liquid layers can be rep-
resented as a flat ribbon graph consisting of two different types
of elements: liquid layers Gi, (i = 1, . . ., I) and the interfaces between
them fj (j = 1, . . ., J � 1), which we will call the internal interfaces.
For the unequivocal description of the graph we must determine
the order of the conformity of its elements. With this purpose,
we enumerate all the interfaces and all liquid layers, for example,
as is done in Fig. 1. Selected numbering scheme must be fulfilled
during the whole process of solving the problem. According to
the chosen numbering scheme, just one liquid layer with the num-
ber i + 1 adjoins to internal interface from the bottom, while the
layer with the number i adjoins from the top of the interface. Each
liquid layer Gi is limited from above by the interface fj (t,x), while
from below – by the interface fj+1 (t,x). Surfaces x = 0, x = L, f0 (t,x)
and fJ (t,x) have certain features and are classified as a special type
surfaces. The orientation of the graph in the plane is presented in
Fig. 1.

2.1. Consider the first type of graph elements – liquid layers

The fluid flow and heat transfer in each of the liquid layer Gi,
(i = 1, . . ., I) is described by the system of Navier-Stokes and thermal
conductivity equations, which in the variables w,x, h (stream func-
tion, vorticity and temperature) have the form [5,6]
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The characteristic values (scale) of length x0, velocity v0 and
pressure p0 should be the same for each layer of the system of lay-
ers. Here Rei = v0 hi/mi and Pri = mi/vi, where vi is the thermal diffu-
sivity coefficient, are the Reynolds and the Prandtl numbers in i-th
layer of the system, respectively. hi ¼ ðTi � T0Þ=dT , where T0 is the
characteristic value of the temperature; dT is the characteristic
temperature difference for the entire system of layers.

In addition, each liquid layer is characterized by its surface ten-
sion coefficient riðTÞ at the interface between the liquid and air.
We assume that the surface tension coefficient of each liquid is a
linear function of temperature
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i.e. it decreases linearly with the increase of temperature.

2.2. Interfaces. functional relations

Interfaces are the second type of graph elements. Consider any
internal interface between the two layers Gi and Gi+1. As we con-
sider any internal surface, we can define it by the equation y = f
(t,x). It is however important to keep in mind that the liquid with
number i + 1 lies below this interface, while the liquid with the
number i is over it (see Fig. 2). It is related to the fact that when
constructing the model we predetermined the order of conformity
of graph elements.

Define the unit tangent and normal vectors at the interface f (t,
x) of liquids as
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Note that for liquid Gi+1, n
! is the outer normal unit vector at the

interface of liquids, while for the liquid Gi for the same interface
this normal unit vector is directed into the liquid.

2.2.1. Functional relations for temperature
In this paper we do not consider the evaporation (condensation)

process at the liquid interface and neglect energy consumption
related to its deformation (since they are negligible). Therefore,

Nomenclature

t time
x,y Cartesian coordinates
vs,vn tangent and normal velocities of points lying on inter-

face
D stress tensor
P pressure
s!; n! tangent and normal vectors
d width of thermal beam
hi/h0 dimensionless thickness of layers
h0 length scale
v0 velocity scale
p0 pressure scale
g0 gravity scale

Dimensionless parameters
Pri Prandtl number in i-th layer
Cai Capillary number
Mni Marangoni number
Cri Crispation number
G Galileo number

Greek symbols
w stream function
x vorticity
h temperature
m kinematic viscosity
q density
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