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This paper derives the time-dependent fundamental solution of the transient convection-diffusion prob-
lem by employing the exponential variable and Fourier transformations. A singular boundary method
(SBM) formulation using this time-dependent fundamental solution is first applied in the simulation of
the transient convection-diffusion problems. Accurate formulas are derived to evaluate the origin inten-

sity factors in the SBM. The proposed method is mathematically simple, matrix-free and fully explicit.
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Furthermore, this scheme is computationally fast, stable, and requires low memory, since it does not need
to solve any algebraic equations. Three benchmark examples, including three-dimensional cases, are pre-
sented to verify this time-dependent SBM strategy.
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1. Introduction

The convection-diffusion equation describes physical phenom-
ena where particles, energy, or other physical elements are trans-
ferred inside a physical system via two processes: diffusion and
convection (advection). Solving the transient convection-diffusion
equation remains a challenging task for most numerical methods
because the model characterizes both wave and diffusion
behaviors.

In recent decades, various numerical methods, such as the finite
element methods (FEM) [1-3], the boundary element methods
(BEM) [4-7], the method of fundamental solutions (MFS) [8-11]
and alternating methods [12], have been developed and employed
to solve physical problems of this kind. Compared with the
domain-type techniques such as the FEM, the boundary-type
methods [7,13,14] have certain advantages in terms of computa-
tional stability, boundary-only discretization, and semi-analytical
approximation. However, if the steady-state fundamental solution
is used, the boundary-type methods lose the boundary-only dis-
cretization merit. Consequently, the finite difference scheme is
often used to handle the time derivative of the governing equation
in combination with the dual reciprocity method (DRM) [15,16]. As
far as numerical efficiency is concerned, the finite difference
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schemes can be quite time-consuming and can also cause instabil-
ity if the time step is not carefully chosen.

The standard BEM, meanwhile, involves challenging mesh gen-
eration and costly numerical integration [7,17]. Compared with the
BEM, the MFS is mathematically simple and very easy to program,
since it does not require an elaborate discretization of the bound-
ary and avoids computationally expensive and mathematically
tricky singular integration. The MFS, however, requires a fictitious
boundary for the placement of the source points to circumvent the
singularity of the fundamental solution. The determination of the
fictitious boundary is still a perplexing and tricky issue, especially
for a complex three-dimensional geometric problem. On the other
hand, great efforts have been made in recent years to overcome
this barrier in the MFS, so that the source points can be placed
directly on the real boundary [18-21].

As an alternative technique to the BEM and the MFS, the singu-
lar boundary method (SBM) [18,22] is a recently developed mesh-
less boundary collocation method. It retains the merits of both the
indirect BEM and the MFS. The main idea is to fully appropriate the
dimensionality reduction and stability superiorities of the BEM and
the meshless and integration-free merits of the MFS. In addition,
the SBM can skillfully avoid the fictitious boundary issue in the
MEFS.

In recent years, the SBM has been successfully applied to elas-
ticity [23], Stokes flow [24], and poroelastic wave [25] problems,
just to mention a few. These applications show that the method
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Nomenclature
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matrix elements

concentration

diffusion coefficient

Heaviside step function

spatial dimension number

unit outward normal vector
number of interior source points
number of boundary source points
total number of source points
Peclet number

flux

iy

ZZzzR8=T0ONn
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dii origin intensity factors on the Neumann boundary
Uji origin intensity factors on the Dirichlet boundary
u* fundamental solution

v convective velocity

Al space increment

At time increment

Fx Fourier transform

Fi! inverse Fourier transform

Y Euler constant

9 angle

o undetermined coefficient vector

is mathematically simple, easy-to-program, truly boundary-only,
free of integration, mesh and fictitious boundary. Nevertheless,
most studies involve the steady-state fundamental solutions rather
than time-dependent fundamental solutions. When the steady-
state fundamental solutions are used in the SBM to approximate
the transient convection-diffusion problems, other techniques
such as the finite difference scheme and the DRM should be
employed to approximate the solution’s functional dependence
on the temporal variables.

This paper derives the time-dependent fundamental solution of
transient convection-diffusion problems, and then develops an
SBM formulation using that fundamental solution to solve the
transient convection-diffusion problems. With the help of the inte-
gral average and surface fitting, the accurate calculation formulas
are obtained to determine origin intensity factors (OIFs) in the
SBM. Compared with the steady-state fundamental solution
scheme, the present scheme is truly semi-analytical and
boundary-only. Moreover, the proposed SBM formulation has clear
physical meaning and does not need additional techniques such as
the Laplace transform, the finite difference method, or the dual
reciprocity method to handle the time-derivative term.

A brief outline of the rest of this paper is as follows. Section 2
derives the time-dependent fundamental solution of convection-
diffusion equations, followed in Section 3 by a description of the
SBM formulation using the time-dependent fundamental solu-
tions. Section 4 compares and discusses the results of the present
numerical scheme with the analytical results for the tested cases.
Finally, some conclusions and remarks are provided in Section 5.

2. Time-dependent fundamental solution of convection-
diffusion equations

Consider the following time-dependent convection-diffusion

equation in a closed domain Q bounded by 9Q =T":
C(x,t

%Jr v-VC(x,t) = DV*C(x,1), x€ Q, 1)
where Q c R", n denotes the spatial dimension number, ¥ € R" the
general spatial coordinate, t the time, » = (v1,v...,v,) the con-
vective velocity, and D the diffusion coefficient. The initial condition
of the convection-diffusion problem is

C(X, t= 0) = CO(X)7 Xc Qv (2)
with the following Dirichlet and Neumann boundary conditions
C(x,t) = C(x,t), xec T,

) o 3
X — g(x,t), xe Dy, G)

where I'p UT'y =T, I'p nI'y = &, and n is the unit outward normal
vector. Co(x), C(x,t), and §(x, t) are specified functions.

Assuming that convective velocity v and diffusivity D are con-
stant, we have an exponential variable transformation [26,27]:

C(x,t) = e"VPw(x, 1), 4)

where w(x, t) is an intermediate field variable, and r represents the
distance vector between the field point ¥ and source point & Using
this transformation, Eq. (1) can be rewritten as:

_Ow(x,t)

DV?w(x,t) — pw(x,t) = T (5)

where g = |v|*/4D.
To determine the fundamental solution w*(x,t) for the above
differential Eq. (5), we refer to Section 3.1 in Ref. [28], such that

8{‘9"; — DVAW* + pw* = 8(x, t). (6)

Applying the Fourier transform F, to both sides of Eq. (6), we have
ow* 200 *

Fu( T3 )~ DFVPW) + pFo(W') = Fuld(a.1)). (7)

According to the properties of Fourier transform, we have

FO®.0) = F6#)-5(0) = A0 60 =160 50, (8)
7%t ) = 5w, ©)
FAVPW) =~ (). (10

If we denote F,(w*)(a, t) by w*(a, t), then

O DI+ pw = 1(a)-o(t), a1
which has the solution

W' (o, t) = H(t)e PP’ +hr, (12)

where H(t) is the Heaviside step function [28]. Applying the inverse
Fourier transform F, we can obtain the fundamental solution of Eq.

(5)

" P e 7H(t)‘57/}t/ Dl t—i(o)
wi(x,t) = F, [w*(a,t)] 77(27”" Rne do

e T (13)
T

Then, we can easily get the time-dependent fundamental solution
of the convection-diffusion equation via Eq. (4)
ut H(t) ef|r\2/4Dt+v»r/2D—\v\2t/4D. (14)

(4nDt)"?
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