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a b s t r a c t

Many concepts in continuum mechanics are most easily understood in principal coordinates; using these
concepts in a numerical analysis requires a robust algorithm for finding the eigenvalues and eigenvectors
of 3 � 3 symmetric matrices. A robust algorithm for solving this eigenvalue problem is presented along
with an analysis of the algorithm. The special case of two or three nearly identical eigenvalues is exam-
ined in detail using an asymptotic analysis. Numerical results are shown that compare this algorithm
with existing methods found in the literature. The behavior of this algorithm is shown to be more reliable
than the other methods with a minimal computational cost.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many concepts in continuum mechanics are simplified when
they are formulated and presented in principal coordinates. Hill
[4] makes use of the ‘‘method of principal axes” in presenting a
number of important concepts for solid mechanics, constitutive
modeling and bifurcation theory. The method of principal axes is
used to provide ‘‘a sure way through tensor algebra which can
otherwise relapse into labyrinthine complexity”. This statement
is as true today as it was when it was published. Numerical meth-
ods for solid mechanics generally use Cartesian coordinate sys-
tems, and in doing so the form of the computational problem is
quite simple. However, some of the mechanics that goes into
developing the numerical problem, in particular kinematics and
constitutive modeling, may be better suited to a formulation in
principal coordinates. Some of these problems can be solved in
other ways (see [1,3]), and some can be approximated (see [7]),
but the best solution is to be able to solve the eigenvalue problem.
To use principal coordinates in computational mechanics, a robust
algorithm – one that gives accurate results for all conceivable cases
– for finding the eigenvalues and eigenvectors of a symmetric, sec-
ond-order tensor (or equivalently a 3 � 3 matrix) must be
developed.

Since accurate solutions to the eigenvalue problem for 3 � 3
symmetric matrices are valuable for computational mechanics, a
number of authors have developed algorithms for finding the
eigenvalues and eigenvectors for these problems. Hartmann [2]

provides a good review of what currently exists. The review in-
cludes two analytical methods presented by Simo and Hughes [8]
and calculations are compared with a numerical solution from
the LAPACK library. It is shown that while the analytical methods
are faster than the numerical routine from LAPACK, for many prob-
lems the eigenvalues returned by the numerical algorithm in LA-
PACK are much more accurate than the analytical algorithms in
Simo and Hughes [8]. Hartmann concludes that ‘‘the analytical
solutions of the eigenvalue problem of symmetric second-order
tensors should only be of interest in theoretical calculations”. The
method presented in this paper is based on an analytical solution
and the accuracy exceeds that of the LAPACK library while at the
same time being comparable in speed to other analytical methods.
The method presented here is slightly more computationally
expensive than other analytical methods, but not to the point of
being a serious disadvantage. Another drawback to some of the
work that has been presented in the literature is that it is not gen-
eral. For example, finding the square root of a 3 � 3 symmetric po-
sitive definite matrix, as in [1] or [3], does not allow one to find the
logarithm of that matrix. The algorithm presented here is extre-
mely general, allowing one to calculate square roots or any other
isotropic tensor function once the eigenvalues and eigenvectors
are found.

In this paper we present a robust algorithm for finding the
eigenvalues and eigenvectors of a 3 � 3 symmetric matrix. The
algorithm is based on an analytical solution of the problem pre-
sented in Malvern [6]. Section 2 reviews the general algorithm
from Malvern. The algorithm is analyzed by looking at the asymp-
totic behavior of the solution when either 2 or 3 eigenvalues are
nearly identical. Based on this analysis an accurate algorithm is
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developed that solves the eigenvalue and eigenvector problem
simultaneously. Furthermore, no tolerances are necessary to deter-
mine when two eigenvalues are ‘‘close”. Section 3 provides an anal-
ysis of the algorithm, comparing it to a method based on Malvern, a
LAPACK routine, and the algorithms presented in Hartmann [2] and
Simo and Hughes [8]. The algorithm in this paper is the only algo-
rithm that rivals the numerical results of the LAPACK routine. Fur-
thermore, it is shown that this algorithm is much faster than the
LAPACK routine and comparable to the speed of other analytical
solutions. Conclusions and areas of application are presented in
Section 4.

2. Eigenvalue problem

2.1. Solution of eigenvalue problem for a 3 � 3 matrix

The eigenvalue problem for a real symmetric 3 � 3 matrix is
well known

A � v ¼ kv; ð1Þ

where A 2 R3�3, the eigenvector v 2 R3 and the eigenvalue k 2 R.
There are three eigenvalues, ki, and three associated eigenvectors,
vi.1 We are interested in symmetric matrices, A = AT, so the eigenvec-
tors can be normalized such that vi � vj = dij.2

The solution of the eigenvalue problem is based on the presen-
tation by Malvern [6, pp. 91–93]. Instead of solving the original
problem (1), the eigenvalue problem is solved for the deviatoric
matrix. The deviatoric matrix, A0, associated with A is

A0 ¼ A� 1
3

ItrA; ð2Þ

where trA is the trace of A and I is the identity matrix. It is easy to
see that the eigenvalues of the deviatoric matrix are just shifted
from those of the original matrix, A, and that the eigenvectors for
the two matrices are the same. The eigenvalue problem for the devi-
atoric matrix given by (2) is

A0 � v ¼ gv;
gi ¼ ki � 1

3 trA:
ð3Þ

Since trA0 = 0, the characteristic equation for the eigenvalues, gi, is

g3 � J2g� J3 ¼ 0; ð4Þ

where J2 and J3 are the second and third invariants of the deviatoric
matrix A03

J2 ¼
1
2

trðA0 � A0Þ; J3 ¼ det A0: ð5Þ

The characteristic equation is a reduced cubic equation – it is miss-
ing its quadratic term – and a solution can be found using the
substitution

g ¼ 2

ffiffiffiffi
J2

3

r
cos a ð6Þ

in (4) and solving the resulting equation for the angle a. The solu-
tion for a is

cos 3a ¼ J3

2
3
J2

� �3=2

: ð7Þ

There are three solutions to (7), a, a + 2p/3 and a + 4p/3, and they are
shown in Fig. 1. Solving for the three angles and substituting them

into (6) gives the three eigenvalues of A0; the eigenvalues of the ori-
ginal matrix, A, are found using (3).

Looking at Fig. 1 it is easy to see that the three angles associated
with the roots of (5) result in eigenvalues that sum to zero, a
requirement since trA0 = 0. Furthermore, the three roots lie in dis-
tinct sectors of the circle, each angle separated by 2p/3, and by
finding one root we could easily find the other two. In fact, this
is entirely valid theoretically. However, in a numerical algorithm
when two eigenvalues are nearly identical it is difficult to retain
accuracy solving the problem in this manner. The following analy-
sis provides a method of finding an accurate numerical solution
when two eigenvalues are ‘‘close”.

2.2. Analysis of two nearly identical eigenvalues

Numerically, the solution presented above breaks down when
we have two nearly identical eigenvalues. This is seen by making
an asymptotic expansion of the eigenvalues. In addition to high-
lighting the problem when two eigenvalues are nearly identical,
the expansion also provides a simple solution.

The analysis starts with two distinct eigenvalues, k1 and k2. De-
fine the third eigenvalue relative to k2, e.g. k3 = k2 + Dk. Substituting
this representation into (3) the eigenvalues of the deviatoric ma-
trix, A0, are4

�g1 ¼ �gð1� eÞ; �g2 ¼ � 1
2 �gð1þ 2eÞ; �g3 ¼ � 1

2 �gð1� 4eÞ;
�g ¼ 2

3 ðk1 � k2Þ; e ¼ Dk
3�g :

ð8Þ

We will examine the case where jej � 1.
Substituting (8) into (5) we have

J2 ¼ 3
4 �g2ð1� 2eþ 4e2Þ;

J3 ¼ 1
4 �g3ð1� 3e� 6e2 þ 8e3Þ:

ð9Þ

These expressions are used in (7) to find an asymptotic expansion
for cos3a in terms of e

cos 3a ¼ sgnð�gÞ 1� 27
2

e2 � 27e3 þ Oðe4Þ
� �

: ð10Þ

Since the leading order term in the expansion is O(1) and e� 1, we
can truncate the terms of order e2 and higher on the right-hand side
of (10). When considering numerical applications, this is valid since
adding a small number to an O(1) term will result in a loss of pre-
cision. Therefore, to first order, when e� 1 the solutions of (10) are

Fig. 1. The general case for finding three distinct eigenvalues. The special case of
two nearly identical eigenvalues occurs as a1 ? 0 and a1 ? p/3. The special case of
three nearly identical eigenvalues is approached as J2 ? 0. As J2 ? 0 the radius of
the circle approaches zero.

1 Latin indices, i, j,k, . . . , have values from 1 to 3.
2 dij is the Kronecker delta. dij = 1 if i = j and dij = 0 if i 6¼ j.
3 Notice that there is a sign difference in the definition of J2 compared to the

standard definition of the second invariant. This is to ensure that J2 > 0 which
simplifies some of the expressions that follow.

4 The superimposed bar on the eigenvalues in (8) denote the exact solutions to the
eigenvalue problem for A0 .
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