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a b s t r a c t

Multi-scale analysis of the mean equation for passive scalar transport is used to investigate the asymp-
totic scaling structure of fully developed turbulent channel flow subjected to uniform heat generation.
Unlike previous studies of channel flow heat transport with fixed surface temperature or constant inward
surface flux, the present flow has a constant outward wall flux that accommodates for the volumetrically
uniform heat generation. This configuration has distinct analytical advantages relative to precisely eluci-
dating the underlying self-similar structure admitted by the mean transport equation. The present anal-
yses are advanced using direct numerical simulations (Pirozzoli et al., 2016) that cover friction Reynolds
numbers up to dþ ¼ 4088 and Prandtl numbers ranging from Pr ¼ 0:2–1:0. The leading balances of terms
in the mean equation are determined empirically and then analytically described. Consistent with its
asymptotic universality, the logarithmic mean temperature profile is shown analytically to arise as a sim-
ilarity solution to the mean scalar equation, with this solution emerging (as dþ ! 1) on an interior
domain where molecular diffusion effects are negligible. In addition to clarifying the Reynolds and
Prandtl number influences on the von Kármán constant for temperature, kh, the present theory also pro-
vides a couple of self-consistent ways to estimate, kh. As with previous empirical observations, the pre-
sent analytical predictions for kh indicate values that are larger than found for the mean velocity von
Kármán constant. The potential origin of this is briefly discussed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Wall-bounded turbulent flows pervade industrial applications.
This fact broadly motivates the on-going efforts to investigate
the properties of wall-flows. In this regard, the associated transport
of heat, mass and momentum are of particular technological
importance in applications pertaining to energy efficiency, envi-
ronmental concerns, and manufacturing processes.

Broadly speaking, thermal processing seeks to force a tempera-
ture variation in a system to attain a specific goal, while the pur-
pose of thermal control seeks to regulate the temperature within
specified bounds, or to control the temperature over time within
a certain margin to ensure a desired operating condition. For such
aims, prediction across parameter variations is often an important
consideration. Thus, significant efforts have been devoted toward
quantifying scaling behaviors associated with heat transport.

Analyses involving the application of multiple-scale approaches
are often used to explore parameter dependent properties of statis-
tical profiles, e.g. [1–4]. An especially prominent scaling framework
is based upon the notion of an overlap layer, as adopted from the
mathematical machinery of matched asymptotic expansions. Here
it is postulated that there exists a region where respective func-
tions of inner and outer normalized distance from the wall are
simultaneously valid [5,6]. An alternative approach, that more
directly invokes the idea of distance-from-the-wall scaling, can be
deduced from dimensional analysis [7]. Under this assumption,
Townsend’s attached eddy phenomenology is inherently
consistent with the existence of a logarithmic mean velocity profile
[8–10]. In connection with this, more recent studies reveal that the
streamwise velocity variance, as well as their higher order even
moments also vary logarithmically [11–13] in a region that falls
within the bounds of the mean profile logarithmic layer. Within
this region (inertial sublayer), the mean dynamics are dominated
by inertia, and the mean momentum equation admits a self-
similar structure [14].
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Consistent with the analogy between heat and momentum
transport, it is rational to expect that the mean temperature profile
in a heated wall-flow will exhibit properties similar to those of the
mean velocity profile. Kader [15] describes the law-of-the-wall for
temperature in a manner similar to the inner function in the over-
lap framework for velocity. This formulation follows from the
assumption that, in the near wall region, the mean temperature,
H, depends only on the shear stress at the wall, sw, the heat flux
at the wall, qw, the distance from the wall, the mass density, q,
dynamic viscosity, l, specific heat, Cp, and thermal conductivity,
k. Accordingly, a logarithmic profile for temperature is observed
for inner-normalized distances from the wall greater than about
30 and Prandtl number less than 1, e.g., [16]. As such, the overlap
layer approach has been used to reason the logarithmic structure
of the thermal boundary layer [17,18]. Based on the overall mean
temperature profile structure, the inner region close to the solid
wall is seen to be composed of a molecular sublayer and a thermal
buffer layer, while logarithmic and wake layers comprise an outer
region that extends to the centerline of the channel/pipe. Like for
velocity, some divide the logarithmic (overlap) layer into two sub-
layers [19,20]. In this description, a convective sublayer is charac-
terized by a negligible conductive effect, while heat transfer is
under a detectable influence of conduction in the thermal
mesolayer.

Based upon his review of available data, Kader [18] estimated
that the thermal Kármán constant, kh, in the logarithmic mean
temperature profile equation is about 0:47. For a fully developed
turbulent channel flow with uniform heating from both walls kh
was found by Kawamura et al. [21] to be roughly independent of
Reynolds number and close to the Kármán constant for velocity,
i.e., 0:40K kh K0:42. It is relevant to note, however, that the
law-of-the-wall for temperature apparently breaks down in flows
where retains validity for velocity. Here we note that the logarith-
mic increase in mean temperature has been previously purported
to be more sensitive to a streamwise pressure gradient than the
mean velocity [22].

Interest in statistical profile properties in wall turbulent flows
has motivated approaches that more directly incorporate the mean
equations to discern scaling behaviors. Based on the relative mag-
nitude of terms in the mean momentum equation, Wei et al. [23]
revealed a four layer structure distinct from the traditional
description. As expected, layers I and IV (the innermost and outer-
most layers) respectively comply with inner and outer scaling.
However, an intermediate length scale,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
md=us

p
, is both empirically

observed and analytically shown to characterize the other two lay-
ers. Similarly, Afzal and coworkers [24–26] deduced an intermedi-
ate scaling for the thermal meso-layer of fully-developed turbulent
channel flow and transitionally rough channel flow. Their analysis
incorporates an intermediate layer that has its own characteristic
scaling, and that lies between the traditional inner and outer lay-
ers. Their formulation also employs a matching procedure that
incorporates three layers and two overlapping regions over which
two adjacent logarithmic regions for the mean temperature profile
are shown to asymptotically form. The thermal meso-length scale
they employ constitutes the geometric mean of the inner, a=us, and
outer, d, thermal length scales, and under inner normalization is

given by
ffiffiffiffiffiffiffiffiffiffi
Prdþ

p
. Here, a is the thermal diffusivity, d is the half chan-

nel height, us is the friction velocity and Pr is the Prandtl number.
Afzal’s analysis similarly employs an intermediate scaled tempera-
ture Tm ¼ Hw þHcð Þ=2, where Hw and Hc are the temperature at
the wall and the channel centerline, respectively.

Using an analysis that also incorporates an intermediate scale,
Wei et al. [27] examined fully developed thermal transport in
channels with constant wall heat flux. They introduced a new inner
variable, yr ¼ g=r2, where g ¼ y=d and r is a parameter defined as

a function of dþ and Peclet number, Pes ¼ Prdþ. Consequently, the

corresponding thermal mesoscale,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hw �Hcð Þ= HsPrd

þ� �q
where

Hs ¼ qw=qCpus, is different from the geometric mean of the inner

and outer thermal length scales,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ad=us

p
. Existing DNS, however,

significantly limited the range of parameters over which Wei
et al. could validate their analysis. Based on DNS data covering a
range of both Reynolds and Prandtl numbers, Saha et al. [28]
explored the scaling properties of scalar transport under a larger
range of constant wall flux conditions. Based upon the magnitude
ordering of terms, they showed that the four-layer thermal regime
emerges when PrJ0:6 at dþ ¼ 180. This four layer regime is anal-
ogous to that first identified by Wei et al. [23] for the momentum,
and its onset occurs at a similar dþ [29]. The analysis of Saha et al.
incorporates the inner normalized mesoscale,

ffiffiffiffiffiffiffi
Pes

p
, which they

show can be used to effectively merge both the mean temperature
and turbulent heat flux over a domain that starts interior to the
location of peak heat flux and ends near the channel centerline.

The previous analyses of the mean thermal energy equation by
Wei et al. [27] and Saha et al. [28] investigated flows having a
constant surface heat flux boundary condition. Analytically, this
presents a significant challenge when compared to the correspond-
ing streamwise momentum equation analysis, where the pressure
gradient in the inner-normalized form of the equation is repre-
sented by 1=dþ. Additionally, the low Reynolds numbers of previ-
ous data make it difficult (and less convincing) to validate the
veracity of the analytical results associated with an asymptotic
analysis. In particular, their data analyses of the mean scalar equa-
tion failed to provide comparably compelling evidence for the exis-
tence of a scaling layer hierarchy (i.e., analogous to what has been
shown for the mean momentum equation), nor clearly delineate
trends for varying Reynolds number and Prandtl number.

The present study follows the same methodology used in previ-
ous studies of the mean momentum [23] and kinetic energy bud-
gets [30]. Here, however, we investigate the mean scalar balance
equation with uniform heat generation for the fully-developed tur-
bulent channel flow. The uniform heat generation term addresses
(analytically mitigates) previous challenges just mentioned by
reducing the mean scalar equation into a form that is much more
like the mean momentum equation. Herein we also employ DNS
data covering a significantly larger range of Reynolds and Prandtl
numbers. The net result of this is to provide more compelling sup-
port for the analytical findings, and more clearly expose dþ and Pr
trends.

In what follows, the ratio of the molecular diffusion (MD) term
to the gradient of turbulent heat flux (GT) term in the mean scalar
equation (e.g., Eq. (7) below) is employed to reveal a four-layer
leading balance structure. Both the Reynolds number and Prandtl
number dependent properties of these layer thicknesses is then
empirically quantified with DNS data and verified through analysis
of the mean equation. As with the momentum field, the analysis
also indicates that the mean scalar equation can be cast into an
invariant form that properly reflects the local dominant physical
mechanisms, and which exposes the effect of the governing small
parameter on an intrinsic scaling layer hierarchy. The Prandtl num-
ber impact on the width distribution of the layer hierarchy is quan-
tified and discussed relative to the underlying physics. Consistent
with the theory, it is shown that on the scaling layer hierarchy
there exists a domain where molecular diffusion effects are sub-
dominant. Here, the layer width function becomes proportional
to the distance from the wall. On this domain, the mean equation
is shown to asymptotically admit a similarity solution in the form
of a logarithmic mean temperature profile. The behaviors of the
coefficients in the logarithmic expression, including kh, are also
described.
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