
A hybrid multilevel Schwarz method for the bidomain model

Simone Scacchi *

Department of Mathematics, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy

a r t i c l e i n f o

Article history:
Received 21 September 2007
Received in revised form 11 March 2008
Accepted 1 April 2008
Available online 15 April 2008

Keywords:
Multilevel Schwarz preconditioner
Domain decomposition
Bidomain model
Computational electrocardiology

a b s t r a c t

A hybrid multilevel Schwarz method is studied numerically for the anisotropic Bidomain model in both
two and three dimensions. This multiscale system models the electrical activity of the heart and it con-
sists of two degenerate parabolic non-linear reaction–diffusion equations, coupled with a stiff system of
ordinary differential equations. The numerical discretization of the whole system by finite elements in
space and semi-implicit methods in time generates ill-conditioned linear systems that must be solved
at each time step. The multilevel algorithm studied employs a hierarchy of nested meshes with overlap-
ping Schwarz preconditioners on each level and is additive within the levels and multiplicative among
the levels. We perform several parallel tests on two Linux clusters, showing that the convergence of
the method is independent of the number of subdomains (scalability), the discretization parameters
and the number of levels (optimality). Moreover the comparison with the traditional Block Jacobi ILU par-
allel preconditioner and the V-cycle Multigrid parallel preconditioner shows that, on a whole heart cycle
simulation, the proposed method attains the best performances in terms of CPU times.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

A parallel multilevel solver for numerical simulations in compu-
tational electrocardiology is introduced and studied. The evolution
of a complete heartbeat, from the excitation to the recovery phase,
is modeled by the Bidomain system, a multiscale anisotropic model
of the cardiac bioelectrical activity (see [29,39]). This model con-
sists of a system of two degenerate parabolic partial differential
equations, of reaction–diffusion type, describing at macroscopic le-
vel the intra and extracellular potentials of the myocardial tissue,
coupled through the non-linear reaction term with a stiff system
of ordinary differential equations, the so-called membrane model,
which describes at microscopic level the ionic currents through the
cellular membrane.

The numerical solution of this model is computationally very
expensive, because of the ill-conditioning of the discrete system
arising at each time step and the different space and time scales in-
volved. It is worth noticing that the dimensions of meaningful por-
tions of cardiac tissue is on the order of centimeters, while the
accurate solution of the steep excitation front requires mesh sizes
on the order of a tenth of millimeter. For what concerns the time
scales, while a normal heartbeat is on the order of one second,
the rapid kinetics in the membrane model require in some phases
time steps on the order of the hundredths of milliseconds. Hence
realistic models with three-dimensional uniform grids can yield

simulations running for thousands of time steps and involving at
each time step the solution of large-scale discrete problems.

Many different approaches (see e.g. [29]) have been developed
in order to overcome these computational limits. Both parallel
and adaptive solvers have been employed in literature. Fully impli-
cit methods in time have been considered in few studies, see
[19,18,17] and require the solution of non-linear systems at each
time step; see also [12] for new developments on domain decom-
position preconditioners for implicit methods. Most numerical
studies employ semi-implicit methods in time that only require
the solution of linear systems at each time step. Many different
preconditioners have been proposed in order to devise efficient
iterative solvers for such linear systems: diagonal preconditioners
[27], Symmetric Successive Over Relaxation [33], Block Jacobi with
incomplete LU factorization for each block [7,32], multigrid
[3,30,34], multilevel additive Schwarz [26]. Parallel solvers based
on finite difference discretizations can be found in [21,24]. Adap-
tive techniques are studied in [6].

The aim of this work is to study the numerical behavior of a hy-
brid multilevel Schwarz preconditioner, additive within the levels
and multiplicative among the levels, applied to the Bidomain sys-
tem. Parallel numerical results, both in two and three dimensions,
using the PETSc library [4], show the scalability, the optimality
and the efficiency of the multilevel method on large-scale simula-
tions of a complete cardiac cycle. Moreover, in order to stress the
performances of the preconditioner, we consider also ellipsoidal
geometries and discontinuous diffusion coefficients, modeling
pathological conditions such as myocardial ischemia. The compar-
ison with the traditional Block Jacobi ILU parallel preconditioner
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and the V-cycle Multigrid parallel preconditioner shows that, to our
knowledge, the multilevel hybrid Schwarz preconditioner for the
Bidomain system attains the best performances to date in terms
of CPU times, reducing the computational costs of about 78% and
12% compared to Block Jacobi and Multigrid, respectively.

The rest of the paper is organized as follows: in Section 2 we
describe the mathematical models considered, in Section 3 we
introduce the numerical methods used, and in particular the mul-
tilevel preconditioner, and finally in Section 4 we report the results
of several parallel numerical tests.

2. Mathematical models

2.1. The anisotropic bidomain model

The cardiac ventricular tissue is modeled as an arrangement of
fibers that rotate counterclockwise from epi- to endocardium, and
that has a laminar organization modeled as a set of muscle sheets
running radially from epi- to endocardium; see [15]. In the Bido-
main model, the cardiac tissue is conceived as the superposition
of two averaged continuous media, the intra and the extracellular
medium (see e.g. [8,9]), whose anisotropy is characterized by the
conductivity tensors DiðxÞ and DeðxÞ, given by

Di;e ¼ ri;e
l alaT

l þ ri;e
t ataT

t þ ri;e
n anaT

n:

ri;e
l ; r

i;e
t ;r

i;e
n are the conductivity coefficients measured along the cor-

responding directions alðxÞ (along fiber), atðxÞ;anðxÞ (tangent and
orthogonal to the radial laminae, respectively and both transversal
to the fiber axis).

The intra and extracellular electric potentials ui;ue are de-
scribed by a parabolic system of two reaction–diffusion partial dif-
ferential equations (PDEs), coupled with a system of ODEs for ionic
gating variables w 2 RM and for the ions concentration c 2 RS.
Denoting by v ¼ ui � ue the transmembrane potential then the
Bidomain model for an insulated cardiac domain X can be written
as the following reaction–diffusion system:

cm
ov
ot � divðDiruiÞ þ Iionðv;w;cÞ ¼ 0 in X� ð0;TÞ;

�cm
ov
ot � divðDerueÞ � Iionðv;w;cÞ ¼ �Ie

app in X� ð0;TÞ;
ow
ot � Rðv;wÞ ¼ 0; oc

ot� Sðv;w; cÞ ¼ 0 in X� ð0;TÞ;
nTDi;erui;e ¼ 0 in oX� ð0;TÞ;
vðx;0Þ ¼ v0ðxÞ; wðx;0Þ ¼w0ðxÞ; cðx;0Þ ¼ c0ðxÞ in X;

8>>>>>><>>>>>>:
ð1Þ

where cm ¼ vCm, Iion ¼ viion, with v the ratio of membrane area per
tissue volume, Cm the surface capacitance and iion the ionic current
of the membrane per unit area. If the applied extracellular current
Ie
app satisfies the compatibility condition

R
X Ie

app dx ¼ 0, this system
uniquely determines v, while the potentials ui and ue are defined
only up to a same additive time-dependent constant related to
the reference potential, chosen to be the average extracellular po-
tential in the cardiac volume by imposing

R
X uedx ¼ 0. We refer to

[8,9,20,31] for a mathematical analysis of the Bidomain model. In
the following we will consider as membrane model the Luo–Rudy
phase I model (LR1, [16]), briefly recalled in the next section.

2.2. The LR1 membrane model

Many models of Hodgkin-Huxley type have been developed for
the cardiac cells, see e.g. [22]. In these models the ionic current
through channels of the membrane, modulated by the transmem-
brane potential v, by gating variables w :¼ ðw1; . . . ;wMÞ and by io-
nic intracellular concentration variables c :¼ ðc1; . . . ; cSÞ, is given by

Iionðv;w; cÞ ¼
XN

k¼1

Gkðv; cÞ
YM
j¼1

w
pjk
j ðv� vkðcÞÞ;

where N is the number of ionic currents, Gk is the membrane con-
ductance and vk the reversal potential for the kth current, pjk

are
integers. The dynamics of the gating variables w is described in
the Hodgkin-Huxley formalism by a system of ODE’s having the fol-
lowing structure

dw
dt ¼ Rðv;wÞ; wð0Þ ¼ w0;

Rjðv;wjÞ ¼ ajðvÞð1�wjÞ � bjðvÞðwjÞ;
aj; bj > 0; 0 6 wj 6 1; j ¼ 1; . . . ;M:

8><>: ð2Þ

The dynamics of the ionic concentration variables c is described by
the additional system of ODE’s

dc
dt ¼ Sðv;w; cÞ; cð0Þ ¼ c0;

Sjðv;w; cjÞ ¼ �
Icj
ðv;wÞ�Acap

Vcj
�zcj
�F ; j ¼ 1; . . . ; S;

8<:
where Icj

is the sum of ionic currents carrying ion cj, Acap is the
capacitive membrane area, Vcj

is the volume of the compartment
where cj is updated, zcj

is the valence of ion cj and F is the Faraday
constant.

The LR1 model, developed in 1991 by Luo and Rudy [16] for the
left ventricle cells, consists of six ionic currents ðN ¼ 6Þ, six gating
variables ðM ¼ 6Þ and one ionic concentration variable ðS ¼ 1Þ, the
intracellular calcium. See Fig. 1 for the time evolution of v,
w1; . . . ;w6, and c1 at a given point of the cardiac domain and the
Appendix.

We remark that during a heartbeat, the time course of the trans-
membrane potential v at each point of the ventricular tissue, also
called action potential, displays mainly three phases having differ-
ent time scales. The first is related to the excitation phase, also
called depolarization, where v undergoes an abrupt temporal
change lasting about 2 ms, followed by a fast exponential decay to-
ward a plateau value. The second is the plateau phase, lasting from
40–50 ms to about 400 ms, according to the ionic model used and
the type of propagating front considered. In this phase, v varies
very little and slowly in comparison with the previous depolariza-
tion phase and the cardiac tissue is refractory, i.e. any applied stim-
ulus does not elicit another action potential. The last is the
recovery phase, also called repolarization, where v returns to the
rest value during a period lasting about 20–50 ms, after which
the tissue becomes excitable again.

3. Numerical methods

In the three-dimensional case, our domain X representing the
left ventricle is modeled by a family of truncated ellipsoids
described by the parameter equations

x ¼ aðrÞ cos h cos / /min 6 / 6 /max;

y ¼ bðrÞ cos h sin / hmin 6 h 6 hmax;

z ¼ cðrÞ sin h 0 6 r 6 1;

8><>:
where aðrÞ ¼ a1 þ rða2 � a1Þ, bðrÞ ¼ b1 þ rðb2 � b1Þ, cðrÞ ¼ c1þ
rðc2 � c1Þ and ai; bi; ci; i ¼ 1;2 are given coefficients determining
the main axes of the ellipsoid. We assume that the fibers rotate
intramurally linearly with the depth for a total amount of 90� pro-
ceeding counterclockwise from epicardium to endocardium. Hence
in a local ellipsoidal reference system ðe/; eh; erÞ the fiber direction
alðxÞ at a point x is given by

alðxÞ ¼ e/ cos aðrÞ þ eh sin aðrÞ; with aðrÞ ¼ p
2
ð1� rÞ � p

4
;

0 6 r 6 1:

We also consider three-dimensional slabs of cardiac tissue, de-
scribed in the usual canonic Cartesian coordinates system by
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