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Direct numerical simulations have been performed of natural convection in a closed cavity with constant
heat fluxes on the vertical sides. Results are presented for Rayleigh numbers in the range 3 x 10'!-
4 x 10" and Prandtl number equal to 1. The flow is characterized by two boundary layers near the heated
and cooled vertical sides and two intrusion layers near the horizontal walls, which complete a recircula-
tion pattern. The net energy surplus transferred upwards by both boundary layers is balanced by heat
conduction through the main body of the cavity. The vertical boundary layer thickness is of O(Ra~%/°)
and the intrusion layers of O(Ra—'/6). Scalings for thicknesses, velocities and temperature gradients,
obtained from order of magnitude estimates, are confirmed by the numerical simulations. The bulk tem-
perature gradient is much larger than those across the thin boundary layers and, therefore, effective in
delaying the onset of instability. Unstable flows are thus found only above a Rayleigh number of the order
of 10'2, in contrast to a cavity with fixed lateral wall temperatures where this is close to 108. The thresh-
old for instability and the dominant frequencies are in satisfactory accord with relevant linear stability
results from the literature. The bulk of the cavity responds passively and filters the excitation from the
unstable boundary layers by retaining frequencies close to the Brunt-Vaisala frequencies in a density
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1. Introduction

Natural convection flows are encountered in a large number of
natural phenomena and technological applications. Some well-
known examples include flows in the atmosphere and the oceans,
motion in the earth’s mantle with the associated magnetic field
and its reversals, recirculation in lakes, estuaries and ponds, heat
exchange of organisms with their environment, fluid motion in
storage and in heat transfer equipment, CVD and plasma process-
ing, metrology, etc. [1-5]. Understanding and predicting such com-
plex phenomena that exhibit chaotic behavior and a great
multiplicity in length and time scales is very important for techno-
logical applications and even more so for natural phenomena, as
for example in weather prediction, ocean currents and climatic
change.

From a different perspective, such flows offer paradigms for
transition to increasingly complex behavior and chaos. They com-
prise, therefore, an attractive area for theoretical studies, where
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numerical computation is, of course, an increasingly important
tool. Many studies exist in the literature, which consider simplified
and idealized geometries, i.e. fluids near heated flat plates, or con-
tained within cylinders [6-8] and cavities [9-15]. It may be men-
tioned also that the complexity of phenomena together with the
simplicity of some flow domains make such problems an attractive
ground for testing the accuracy and efficiency of numerical
techniques.

Several studies exist in the literature dealing with natural con-
vection flow in a cavity, which is the topic of the present work as
well. In particular, the case where the vertical sides are held at
fixed temperatures includes several two- and three-dimensional
computational studies [10-15] investigating flow structure and
dynamics, transition, scaling regimes, heat transfer, dispersion of
suspended microparticles [16], as well as efficiency of numerical
approaches.

The related problem where the heat flux instead of the temper-
ature is fixed on the lateral walls has received relatively less atten-
tion. The flow and heat transfer near a flat vertical plate has been
considered in the works of Gebhart and collaborators [17-19] in
terms of boundary layer structure and linear stability. Bark et al.
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Nomenclature

cp specific heat

ey, normalized unit vector in y-direction
f frequency

Smax maximum Brunt-Vaisala frequency
g gravity constant

H linear dimension of square cavity
k thermal conductivity

ky wavenumber in the x-direction

ky wavenumber in the y-direction

n unit vector normal to the interface
P normalized liquid pressure

Py pressure scale

Pr Prandtl number

q heat flux

r dimensionless test function for pressure
Ra Rayleigh number

Re Reynolds number

S vertical temperature gradient

t time

T temperature

To reference temperature

u normalized velocity

Uo velocity scale

I velocity magnitude of intrusion layers
dimensionless test function for velocity
spatial coordinate
spatial coordinate

<

= x <

Greek symbols

o thermal diffusivity

B thermal expansion coefficient

é boundary layer thickness

o intrusion layer thickness

At dimensionless numerical time step

AT temperature difference across boundary layers
e dimensionless temperature

u viscosity

v kinematic viscosity

Do density at reference temperature

D dimensionless test function for temperature

Superscripts and subscripts
0 reference value
n instantaneous value at n-th time step

[20] analyzed the scalings, the transient development of boundary
layers, as well as the bulk stratification in a vertical slot with pre-
scribed fluxes on the two opposing sides. Interestingly, they sug-
gest that similar phenomena take place during mass transfer in
electrochemical systems, i.e. in lead-acid batteries or and in elec-
trochemical polishing of metals. The linear stability of the flow in
a similar slot has been considered by Sundstrom and Vynnycky
[21] for various orientations. McBain et al. [22] considered the flow
near a flat plate in the presence of a mean temperature gradient in
the bulk and presented results from linear stability analysis, as
well as nonlinear simulations near the threshold of instability.
Interestingly, they suggest that the fixed heat flux boundary condi-
tion describes more faithfully the processes during katabatic wind
generation due to radiative cooling of the soil at night, a problem
originally considered by Prandtl. Direct numerical simulations of
the unstable boundary layer near a uniformly heated vertical plate
but without a bulk temperature gradient are presented in Aberra
et al. [23].

To the best of the authors’ knowledge, despite its simplicity, the
problem of flow development and transition to instability in a
closed cavity with fixed heat fluxes on the sides has been only
addressed to a very limited extend in the literature, and mostly
for shallow cavities [24,25]. As will be discussed in the following
sections, for cavities of aspect ratio near unity or larger (height
over width), a challenge to be faced is that very high Rayleigh num-
bers are needed for instability to appear. This is because the heat
flux conditions allow a stable temperature stratification to develop
in the bulk, which overshadows the temperature differences in the
boundary layers and suppresses the development of the instability.

The structure of the presentation is a follows: In Section 2 the
problem is defined and the basic scalings for velocities, tempera-
tures and boundary layer thicknesses are deduced on the basis of
order of magnitude estimates for laminar flow. Then the dimen-
sionless equations are obtained and the numerical approach is out-
lined. In Section 3 the results obtained from direct numerical
simulations are presented over a range of Rayleigh numbers that
covers the transition to instability and progressively more complex
behavior. The basic scalings are compared with the numerical
results and the features of the instability, such as the transition

threshold and the frequencies of the unstable waves are discussed
in the light of previous relevant studies.

2. Problem definition, mathematical and numerical
formulation

We consider a square cavity enclosing a Boussinesq fluid. Heat
is supplied uniformly through one vertical side and it is withdrawn
from the opposite vertical side, also uniformly. Thus, the overall
thermal balance is maintained in the cavity. The top and bottom
boundaries of the cavity are considered to be thermally insulated.
Owing to the development of temperature non-uniformities within
the fluid, density differences arise resulting in natural convection
in the cavity.

2.1. Mathematical description

The fluid motion is governed by the Navier-Stokes equations,
augmented by the buoyancy term, which in the Boussinesq
approximation is linear in the temperature deviation from a refer-
ence value, Ty,

Du
Popp = ~VP+ 1V U+ pogB(T —Toey (1)

Here, pg is the fluid density at the reference temperature, i the vis-
cosity and g the thermal compressibility, which are both assumed
constant. This is supplemented by the continuity equation, which
retains the same form as in incompressible flows.

Vau=0 )

No-slip conditions are assumed to apply over all the bounding sur-
faces of the cavity.
The temperature field is described by the energy equation

DT
PoCr oy = kV>T, 3)

where the thermal conductivity, k, and heat capacity, cp, are also
assumed constant. The constant heat flux conditions at the vertical
boundaries take the form
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