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a b s t r a c t

Soil thermal conductivity is an important parameter in the thermal simulations of geo-environmental
structures. It is, however, difficult to measure the thermal conductivity as it is affected by several param-
eters, especially the soil water content. The objective of this paper was to present a measurement
methodology based on least squares finite element method (LSFEM). The LSFEM algorithmwas developed
to directly solve the heat conduction equation, in which the measured temperatures served as input data
and the thermal parameters were the unknown variables. The appeal of the LSFEM algorithm lied in its
high efficiency and accuracy because no iterations were needed. To obtain the temperature data used for
LSFEM solution, we designed a laboratory experiment to produce measurable temperature gradients. The
spatial and temporal differences in the temperature measurements were identified to ensure the unique-
ness and nonsingularity of the LSFEM solution. The corresponding water content can be simultaneously
obtained from the methodology. The measured results suggest that the proposed methodology is promis-
ing for measuring the soil thermal conductivity.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Soil thermal conductivity is an important parameter in thermal
simulations for the applications in geo-environmental engineering
[1,2], including geothermal energy extraction [3,4], radioactive
waste repositories [5,6] and ground modification techniques
employing heating and freezing [7,8]. The thermal conductivity
varies with changes in soil properties, such as the mineral compo-
sition, pore fluid, geometrical configuration of pores, and tempera-
ture. The variation can reach a high level of complexity, which
causes difficulty in measuring the thermal conductivity of soils.
However, the internal temperature, which is easy to obtain, can
be used to determine the variable thermal conductivity using
appropriate analysis techniques.

The rise and fall of internal temperatures submitted to temper-
ature gradients are usually measured in the laboratory. The labora-
tory techniques used to measure the temperatures can be classified
into two main categories. The first involves steady state methods
[9,10] in which the flow flux through the sample reaches a con-
stant level. The stabilized temperature distribution is then used
to estimate the constant thermal conductivity. Therefore, steady

state methods cannot obtain the variations of thermal conductiv-
ity. The second category involves unsteady methods [1,11,12]
which measure the temperatures during an unsteady heat transfer
process. Note that the thermal conductivity is easily burdened with
the measurement errors in temperatures that are very difficult to
assess. The precision of the experimental measurements depends
on the identification of temperature differences.

Calculation of thermal conductivity from the temperatures
measured in a medium usually involves the nonlinear inverse heat
conduction problem [13]. Most of the analysis methods used to
estimate the thermal conductivity are based on optimization tech-
niques [14–19]. In these methods, the unknown thermal conduc-
tivity is found by minimizing the difference between measured
temperatures and the corresponding results, which are calculated
by the heat conduction solution for the given boundary and initial
conditions. These methods often require a large number of itera-
tions and forward calculations, and they are usually either locally
optimal or inefficient. To avoid numerous iterations, many non-
iteration methods [20–25] have been proposed for estimating ther-
mal conductivity with high efficiency. However, some prior
assumptions on the approximated function of thermal conductiv-
ity or temperature distribution are usually required, and most of
these methods are developed for analytical solutions. Because of
the complexity associated with the determination of variable
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thermal conductivity, applications of the non-iteration methods
are limited.

In this paper, a new methodology based on least squares finite
element method (LSFEM) is proposed for measuring the thermal
conductivity of soils. The LSFEM is a non-iteration algorithm for
estimating the thermal conductivity from measured temperatures.
No prior information on the functional forms of thermal conductiv-
ity is required. To ensure the LSFEM solution is unique and nonsin-
gular, an experiment is designed to record the spatial and temporal
differences in the internal temperatures. The thermal conductivity
and water content of soils can be obtained simultaneously with the
proposed methodology.

In the following sections, the LSFEM algorithm is developed first
for estimating thermal conductivity from temperature data. The
experimental process to measure the temperature data is then
described, followed by determination of the thermal conductivity
in the laboratory test. Main conclusions from this study are given
in the final section.

2. LSFEM algorithm

The governing differential equations for heat conduction prob-
lem can be described using Eqs. (1a)–(1d).
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where q, c and k represent density, heat capacity and thermal con-

ductivity, respectively, _Qv is rate of heat source per unit volume, T is
temperature, and t represents time index. The boundary conditions
include the temperature Tg and the heat flux qh on the subsets Cg

and Ch, respectively, and T0 is the initial temperature distribution
in the control volume X. The LSFEM algorithm is used to determine
the thermal conductivity and heat capacity from a given temporal
and spatial distribution of temperature data.

2.1. Finite element method (FEM) for discretization

The differential Eqs. (1a)–(1d) are not amenable to analytical
solutions. Finite element method (FEM) for spatial discretization
and finite difference method (FDM) for temporal discretization
are adopted to solve the equations in engineering applications.

The Galerkin FEM [26], a weighted residual method in which
trial functions themselves serve as weighting functions, is used
for spatial discretization, and the one-dimensional finite difference
scheme is used for temporal discretization. The finite element
approximation of Eqs. (1a)–(1d) can be obtained as
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where g ¼ ðt � tmÞ=Dt. The coefficient g may take any value from 0
to 1. The value of g ¼ 0:5 corresponding to the mid-difference
(Crank-Nicholson) scheme is adopted in this paper. fTg is the vector
of nodal temperatures; ½C� and ½K� are the matrices of heat capacity
and thermal conductivity, respectively; and fFg is the vector of
nodal loads, expressed as follows:
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The matrix ½C� is a function of volumetric heat capacity qc, and
½K� is a function of thermal conductivity k. Multiplying the element
matrices by the respective temperature vectors and reassembling
the columns of the obtained vectors according to elemental
unknown parameters, yields equations with material parameters
as the basic unknown variables.

½C0�fqcgt þ ½K0�fkgt ¼ fFg; at t 2 ½tm; tm þ Dt� ð4Þ
where ½C0� and ½K0� are the coefficient matrices of volumetric heat
capacity qc and thermal conductivity k, respectively, expressed as
follows:
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where the indexes Iqc and Ik represent the material numbers of vol-
umetric heat capacity and thermal conductivity, respectively. Eq.
(4) can be simplified in the matrix form with a number of Nnodes

equations and Nt
x unknown variables at the time step

t 2 ½tm; tm þ Dt�, written as

½A�fxgt ¼ fFg; at t 2 ½tm; tm þ Dt� ð6Þ
where Nnodes represents the total number of nodes, and Nt

x is the
total number of unknown qc and k at the time step,
Nt

x ¼ Nt
qc þ Nt

k. fxgt is the vector of material parameters at the time
step, and ½A� is the coefficient matrix, expressed as

½A� ¼ ½C0 K0 � ð7aÞ
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2.2. Least squares method (LSM)

The second technique used in the paper to solve Eq. (6) is the
least squares method (LSM). It should be noted that the number
of linearly independent equations should be equal to or more than
the number of unknown variables, otherwise Eq. (6) cannot yield a
unique solution. The number of effective equations is determined
by the temporal and spatial differences in the temperatures. There-
fore, the difference should be measured with high precision and
good reliability.

The residual vector components are defined as

ni ¼ Aijxj � Fi ð8Þ
The problem of searching for the approximate parameters xj is

formulated as that of minimizing a penalty function of the residual
vector:

f ðxÞ ¼
XNnodes
i¼1

ðAijxj � FiÞ2 ! min ð9Þ
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