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a b s t r a c t

In this paper, a new numerical method, Element Differential Method (EDM), is proposed for solving gen-
eral heat conduction problems with variable conductivity and heat source subjected to various boundary
conditions. The key aspect of this method is based on the direct differentiation of shape functions of
isoparametric elements used to characterize the geometry and physical variables. A set of analytical
expressions for computing the first and second order partial derivatives of the shape functions with
respect to global coordinates are derived, which can be directly applied to governing differential equa-
tions and boundary conditions. A new collocation method is proposed to form the system of equations,
in which the governing differential equation is collocated at nodes inside elements, and the flux equilib-
rium equation is collocated at interface nodes between elements and outer surface nodes of the problem.
EDM is a strong-form numerical method. It doesn’t require a variational principle or a control volume to
set up the computational scheme, and no integration is involved. A number of numerical examples of
two- and three-dimensional problems are given to demonstrate the correctness and efficiency of the pro-
posed method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Heat conduction and other engineering problems are usually
governed by a set of simultaneous second-order partial differential
equations (PDEs), with a proper set of temperature (Dirichlet,
essential) and flux (Neumann, natural) boundary conditions. Vari-
ous numerical methods are available to solve these types of
problems. The frequently used ones are the finite volume method
(FVM) [1–4], finite difference method (FDM) [5–9], finite element
method (FEM) [10–15], boundary element method (BEM)
[16–22], and mesh free method (MFM) [23–28].

FVM and FDM are the frequently used methods in fluid
mechanics as well as heat and mass transfer problems. FDM
directly discretizes the governing differential equations based on
the use of regularly distributed grids, while FVM works over the
constructed control volume of each grid by employing the Gaus-
sian integration principle to transform the flux-related terms in
the governing equation to the boundary of the control volume.
They have advantages of easily discretizing the governing
equations and treating discontinuous physical phenomena, such
as capturing shock waves and implementing upwind scheme.

The main drawback of these two methods is that a lot of control
volumes or points are required to achieve a satisfactory result,
and the computational accuracy in heat flux on the boundary is
poor [29–31].

FEM is the dominant method in the analysis of solid mechanics
as well as other engineering problems. The distinct advantage of
FEM is that almost any complicated engineering problems can be
simulated using FEM. This feature is attributed to the use of vari-
ous well-formed isoparametric elements which can be employed
to discretize the geometry of the problem and interpolate physical
variables. And, also because of using the isoparametric elements,
the total numbers of elements and nodes required in FEM are much
less than that used in FVM and FDM. The drawbacks of FEM are
mainly embodied in the following aspects: (1) A variational or a
virtual work principle is needed to establish the FEM formulation.
Different problems have different representation forms of these
principles, which gives rise to the inconvenience to set up a unified
algorithm in handling multi-field coupling problems. (2) Domain
integration for each of the elements is required, which sometimes
is time consuming and different number of integration points
(Gaussian points) may result in different computational accuracy
of the variable gradients or stresses. (3) Too heavy distortion of
the elements is prohibited to avoid the ill-condition of the element
stiffness matrix.
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It is worth mentioning that a new method, called the control
volume finite element method (CVFEM), was proposed by Baliga
and Patankar [32,33]. The CVFEM is a scheme that uses the advan-
tages of both FVM for easy simulation of multi-physics problems
and FEM for fitting complex geometries. This method has been well
developed by Sheikholeslami and co-workers [34–37] for solving
heat transfer and fluid dynamics.

Comparing to FEM, the BEM only needs to discretize the bound-
ary of the problem into elements. This feature of BEM not only can
reduce the dimensions of the problem by one, but also can easily
simulate the heat and stress concentration behaviors [16,21]. The
drawback of BEM is that a fundamental solution is required in set-
ting up the BEM formulation, which is usually derived from a linear
problem, and therefore it is difficult to establish a pure BEM algo-
rithm for non-linear and non-homogeneous problems. Different
from the above mentioned methods, MFM only needs a group of
distributed points in the computational region, and therefore the
distinct advantage of MFM is that problems with irregular geome-
tries can be easily discretized. However, MFM has the drawbacks of
time-consuming to form the global shape functions and difficulty
to apply boundary conditions [23,24].

According to the formulation technique, the existing numerical
methods can be roughly divided into two categories: weak-form
and strong-form techniques [25]. In the weak-form technique,
such as the FEM, BEM and part approaches of MFM, the governing
PDE is solved indirectly, by converting it to a weak form using a
mathematical principle, such as the variational principle, or an
energy principle [10,12]. Attributing to the use of easily well-
formed elements which can guarantee the variation of the physical
variables to be consistent through element nodes, the weak-form
technique usually results in very stable computational results.

In the strong-form technique, such as most approaches of MFM
[25] and the conventional FDM, global shape functions are con-
structed by selecting a number of nodes around the node under
consideration, and then, to form the final system of equations.
The physical variables expressed in terms of the shape functions
and their nodal values are directly substituted into the governing
partial differential equations for each of the nodes in the interior
of the domain, and into the relationships of boundary conditions
about physical variables and their fluxes for all nodes on the
boundary. Because all the equations (governing equations and
boundary conditions) are all enforced at the nodes, this type of
technique is usually called the collocation method [26,38]. The
working process of this method is very straightforward, and can
be easily coded for complicated multi-field problems. However,
since there are no means to control the stability and the conver-
gence of the solution, the collocation method is often found not
stable and the solutions can vary a lot when the locations of the
nodes change [25]. Besides, since the governing equations and
the boundary conditions are entirely separately satisfied at indi-
vidual nodes, there could be conflicts for nodes near the boundary.
This disconnected situation could be one of the main causes of the
instability issues in the collocation methods. Therefore, to ensure
the stability of the solution, certain stabilization techniques must
be used in the strong-form technique [23].

Recently, a different strong-form technique was proposed by
Wen and Li [39–41], which is called the finite block method
(FBM). A similar technique to FBM was proposed by Fantuzzi and
Tornabene [42–44] for two-dimensional problems, which is called
the strong formulation finite element method (SFEM). This type of
methods incorporates the mapping technique proper of FEM and
the strong form collocation approach. In these methods, isopara-
metric element-like blocks in FBM or sub-domains in SFEM are
constructed based on the Lagrange interpolation formulation. In
FBM, only the first order partial derivative of physical variables
with respect to global coordinates is used and high order spatial

derivatives are calculated through the recursive use of the first
order derivative. In FBM and SFEM, the governing equation formu-
lated using the constructed derivatives is applied to the internal
nodes, and the specified boundary conditions on each block’s/su
b-domain’s boundary are applied as independent equations. In this
way, the formed final system of equations includes internal nodal
temperatures and each block’s boundary temperature and flux as
unknowns. When solving a problem using FBM/SFEM, a few high
order blocks, each having many nodes, are used to ensure the final
system of equations not so large. As in other strong-form tech-
niques, FBM/SFEM have the advantage of easy coding, but has
the drawbacks of having too many unknowns in the system of
equations and needing too many nodes over each block/
sub-domain when solving a complicated practical engineering
problem.

The motivation of this paper is to establish a numerical method
which can be easily used as the collocation method and can result
in stable computational results as FEM. To achieve this purpose, a
new robust method, element differential method (EDM) [45], is
proposed in this paper for solving general heat conduction prob-
lems based on the use of isoparametric elements as used in the
standard FEM [4]. A set of explicit formulations of computing the
first and second order spatial derivatives are derived for two-
dimensional (2D) and three-dimensional (3D) problems. These
formulations are expressed for shape functions of elements and
therefore can be used to any physical variables’ differentiation.
EDM is a strong-form technique, which borrows the idea of FEM
in the aspect of using isoparametric elements to obtain the spatial
derivatives, and the idea of FBM/SFEM and collocation-like MFM in
the aspect of collocating equations at nodes. The former (using ele-
ments) can result in very stable solutions and the latter (collocat-
ing at nodes) does not require any integration. Two distinct
novelties can be found in the paper: (1) a set of analytical expres-
sions of computing the second order spatial derivatives of shape
functions for 3D problems are derived for the first time, which
can make the computation more accurate and faster, and (2) a
new collocation and assembling technique is proposed for forming
the system of equations, which can make the system have the size
as in the standard FEM, much smaller than in FBM and SFEM. Since
EDM can use high order isoparametric elements to compute the
spatial derivatives, the computational accuracy in heat flux is
higher and the required total number of computational nodes are
much less than the frequently used method (FVM) in heat transfer
problems. The most important feature of the proposed method is
that the derived spatial derivatives can be directly substituted into
the governing equations and the heat flux equilibrium equations to
form the final system of algebraic equations, and no any
mathematical principles or integrations are required. Therefore,
EDM is very easy to be coded in dealing with engineering problems
with complicated governing equations and boundary conditions.

2. Governing equations for heat conduction problems

The governing equation for steady state heat conduction prob-
lems with a spatially varying thermal conductivity and heat source
can be expressed as [27]

r � ðk � rTÞ þ QðxÞ ¼ @

@xi
kijðxÞ @TðxÞ

@xj

� �
þ QðxÞ ¼ 0 ð1Þ

The boundary conditions of the problem are

TðxÞ ¼ �T x 2 C1 ð2aÞ

qðxÞ ¼ �kijðxÞ @TðxÞ
@xj

ni ¼ �q x 2 C2 ð2bÞ
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