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a b s t r a c t

To examine convection in porous media, numerous analyses and numerical simulations have been con-
ducted based on the macroscopic governing equations. In deriving the macroscopic governing equations,
the phenomena intrinsic to porous media, such as Darcy’s flow resistance, Forchheimer’s flow resistance,
and dispersion, are modeled using the theorem of the local volume average of a gradient (or a diver-
gence). The theorem has been widely accepted as fundamental in the theory of convection in porous
media; however, certain questions relating to the correctness of the theorem (the continuous derivative
of the volume average and the pressure correction for Darcy’s law) have been raised. In this study, we
modify the conventional theorem for the local volume average of a gradient (or a divergence) to solve
the aforementioned questions. First, we introduce the concept of a point mass to describe the reference
point for the movement of the fluid phase, and we derive the Reynolds transport theorem in the macro-
scopic field that corresponds to the continuum of porous media. Then, we examine the definition of diver-
gence at a point to obtain the relation between the microscopic description that employs the velocity
vector u and quantity B of the fluid particle and the macroscopic description that employs the reference
velocity vector u0 and the reference quantity B0 of the point-mass particle, and we derive the modified
theorem for the local volume average of a gradient (or a divergence). Furthermore, we derive the govern-
ing equations for porous media with the aid of the modified theorem.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The local volume averaging method [1–3] is an important ana-
lytical technique for modeling the macroscopic governing equa-
tions that reflect the pore-level transports in porous media. This
technique handles the macroscopic phenomena, such as Darcy’s
flow resistance [4], Forchheimer’s flow resistance [5–6], dispersion
[7–9], turbulence [10–13], and the boundary conditions at fluid–
porous interfaces [14–18]. Slattery [19] proposed a theorem that
replaces the average of a gradient with the gradient of an average.
Before modifying this theorem, we will summarize its derivation
[1–3]. The general transport theorem can be written as

d
dt

Z
VðtÞ

BdV ¼
Z
VðtÞ

@B
@t

dV þ
Z
AðtÞ

ðBuAÞ � ndA; ð1Þ

where VðtÞ is the volume bounded by surface AðtÞ, uA ¼ dr=dt is the
velocity of the area element dA, n is the normal unit vector to AðtÞ, r
is the spatial position vector, and t is the time. Eq. (1) is applicable
to any quantity B (tensor of any order), and the velocity of the area
element, uA can be different from the velocity of the material ele-

ment (particles of fluids or solids), u. When uA and u are the same,
then the general transport theorem becomes the Reynolds transport
theorem which is used in formulating the basic (governing) equa-
tions of continuum mechanics

d
dt

Z
VðtÞ

BdV ¼
Z
VðtÞ

@B
@t

dV þ
Z
AðtÞ

ðBuÞ � ndA: ð2Þ

Here, d=dt becomes the material time derivative D=Dt and the total
mass of material in the material volume VðtÞ is conserved, indepen-
dent of time [20,21]. The following expression, which was obtained
by replacing time parameter t with arc length s in the general trans-
port theorem, is applicable to any fluid-related quantity B in porous
media:

d
ds

Z
Vf ðsÞ

BdV ¼
Z
Vf ðsÞ

@B
@s

dV þ
Z
Af ðsÞ

B
dr
ds

� ndA; ð3Þ

where Vf ðsÞ is the volume of the fluid phase in a representative ele-
mentary volume Vr ¼ Vf þ Vs, Af ðsÞ is the bounding surface of Vf ðsÞ,
and VsðsÞ is the volume of the rigid solid phase bounded by surface
AsðsÞ (see Fig. 1). Howes and Whitaker [22] derived Eq. (3) directly
rather than as an appendage of the general transport theorem [Eq.
(1)], and the derivation is similar to that of the Reynolds transport
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theorem with the use of the Jacobian of the transformation of vari-
ables [23]. The bounding surface Af is divided into

Af ¼ Aff þ Afs; ð4Þ
where Aff is the area of the fluid phase passing through the surface
of volume Vr , and Afs the interfacial area between the fluid and the
solid phases in Vr . To obtain the theorem for the local volume aver-
age of a gradient, the following three conditions are used:

(a) B ¼ BðxiðsÞ; tÞ is an explicit function of the spatial coordinates
and time:

@B
@s

¼ 0; ð5Þ

(b) dr=ds over the solid–fluid interface is a tangent vector to
interface Afs:

dr
ds

� n ¼ 0 on Afs; ð6Þ

(c) provided that volume VrðsÞ is translated without rotation
along the arbitrary curve s, any differential variation in
pð¼ r� r0Þ is a tangent vector to surface Aff :

dr
ds

� n ¼ dr0
ds

� n on Aff ; ð7Þ

Applying Eqs. (5) and (6) to Eq. (3), we obtain

d
ds

Z
Vf

BdV ¼
Z
Aff

B
dr
ds

� ndA; ð8Þ

As the directional derivative [24] is given as

d
ds

¼ dr0
ds

� r; ð9Þ

substituting Eqs. (7) and (9) into Eq. (8) yields

dr0
ds

� r
Z
Vf

BdV ¼
Z
Aff

B
dr0
ds

� ndA: ð10Þ

If we remove dr0=ds from the integral sign,Z
Aff

B
dr0
ds

� ndA ¼ dr0
ds

�
Z
Aff

BndA; ð11Þ

Eq. (10) will be reduced to

dr0
ds

� r
Z
Vf

BdV ¼ dr0
ds

�
Z
Aff

BndA: ð12Þ

As dr0=ds is an arbitrary vector, we obtain the relation

r
Z
Vf

BdV ¼
Z
Aff

BndA; ð13Þ

By applying the divergence theorem [1,24], we obtainZ
Vf

rBdV ¼
Z
Aff

BndAþ
Z
Afs

BndA; ð14Þ

where the first term on the right-hand side of Eq. (14) is expressed
as in Eq. (13); hence, the theorem for the local volume average of a
gradient is given by

hrBiðf Þ ¼ rhBiðf Þ þ 1
Vf

Z
Afs

BndA; ð15Þ

Fig. 1. Schematic of a representative elementary volume. The vector r0 is the position vector locating the reference point s on the arbitrary curve. Gray and white areas denote
solid and fluid phases, respectively.
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