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Abstract

An implicit/explicit integration scheme for non-linear constitutive models is presented. It aims at providing additional computability
to those solid mechanics problems were robustness is an important issue, i.e. material failure models equipped with strain softening, soft
materials, contact-friction models, etc., although it can also provide important advantages, in terms of computational cost, with respect
to purely implicit integration schemes. The proposed scheme is presented based on general families of constitutive models (continuum
damage and elasto-plasticity) and its properties, in terms of robustness and accuracy, are analytically derived and computationally
assessed by means of numerical simulations. An adaptive time stepping algorithm, based on a priori control of the committed error
and the application of the proposed scheme to contact/friction interfaces are also presented.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider a typical, displacement driven, material
non-linear solid mechanics problem, appropriately discret-
ized in time, t 2 ½0; T �, and space, x 2 X, which, after appli-
cation of the selected time marching algorithm and spatial
discretization scheme, at time step nþ 1, reads:

Find:

anþ1; anþ1; rnþ1;

Such that:

Fintðanþ1; rnþ1; tnþ1Þ � Fextðtnþ1Þ
¼ Gðanþ1; rnþ1ðanþ1Þ; tnþ1Þ ¼ 0

ðbalance of forcesÞ; ð1Þ

gðanþ1; rnþ1; tnþ1Þ ¼ 0

ðstate evolution equationÞ; ð2Þ

_rnþ1 �
rnþ1 � rn

Dtnþ1

¼ Rðeðanþ1Þ; anþ1; rð�ÞÞ

ðconstitutive equationÞ; ð3Þ

where anþ1 are the nodal displacements, at the end of time
step nþ 1, and anþ1 and rnþ1 are, respectively, the strain-
like variable and the stresses at the sampling points. Addi-
tionally, enþ1 are the strains, related to the stresses through
the (non-linear) constitutive function, R, in rate form in Eq.
(3), and Fext and Fint stand, respectively, for the external
and internal forces whose balance is established in Eq.
(1). Therein tnþ1 (tnþ1 P 0; Dtnþ1 � tnþ1 � tn P 0) stands
for that increasing parameter being either the actual time
(as in dynamic problems) or playing the role of time (the
pseudo-time identified as the loading factor or the arc
length parameter) in quasi-static problems.
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In the context of the theory of dissipative material mod-
els equipped with internal variables [1,2], in Eq. (2) function
gðanþ1; rnþ1; tnþ1Þ implicitly defines the current value of these
internal variables, anþ1. For rate-dependent models, this
function can be identified from the time-discretized version
of the evolution equations of the internal variables i.e.

_anþ1 �
anþ1 � an

Dtnþ1

¼ hðanþ1; rnþ1; tnþ1Þ

ðevolution equationÞ; ð4Þ
gðanþ1; rnþ1; tnþ1Þ � ðanþ1 � anÞ
� ðtnþ1 � tnÞ � hðanþ1; rnþ1; tnþ1Þ ðstate equationÞ; ð5Þ

whereas in rate-independent models it comes out from the
combination of the Kuhn–Tucker algorithmic loading/
unloading conditions and the evolution equations of the
internal variables, typically [2]:

Dknþ1 P 0; f ðrnþ1; anþ1ÞP 0; Dknþ1f ðrnþ1; anþ1Þ ¼ 0

ðloading=unloading conditionsÞ; ð6Þ

_anþ1 �
anþ1 � an

Dtnþ1

¼ Dknþ1

Dtnþ1

ðevolution equationÞ; ð7Þ

unloading! Dknþ1 ¼ 0) gðanþ1; rnþ1; tnþ1Þ � anþ1 � an

loading! Dknþ1 6¼ 0) gðanþ1; rnþ1; tnþ1Þ � f ðrnþ1; anþ1Þ

�
ðstate equationÞ; ð8Þ

where Dknþ1 and f ðrnþ1; anþ1Þ, in Eq. (7), are, respectively,
the algorithmic Lagrange multiplier and the restriction
defining the closure of the elastic domain in the stress space
ðErnþ1

:¼ frnþ1; f ðrnþ1; anþ1Þ 6 0gÞ.
Regarding Eq. (3) the specific format of function R is

determined by the selected algorithm for integration of
the material model. Typically, a true dependence of
Rðanþ1; anþ1; rnþ1Þ on the values of the stresses at the end
of the time step ðrð�Þ � rnþ1Þ corresponds to a classical
implicit (backward-Euler) integration, whereas dependence
on values at previous time steps ðrð�Þ ¼ uðrn; rn�1; . . .Þ char-
acterizes an explicit integration of the material model.

Much has been written in the literature about implicit vs.
explicit integration schemes and the advantages and disadvan-
tages of each of them. They can be summarized as follows:

� Explicit integration schemes are in many cases condition-
ally stable. This translates into a limitation of the time
step length and, therefore, a large number of time steps
are needed to solve the problem. On the other hand, rnþ1

in Eqs. (1)–(3) becomes, in many cases, linearly or quasi-
linearly dependent on the problem unknowns, anþ1. In
many cases this translates into a linear or a quasi-linear
structure of function G in Eq. (1), and the global algo-
rithm for its resolution becomes, generally, very robust.
� Implicit integration schemes are generally uncondition-

ally stable. Therefore, there is no intrinsic limitation
on the length of the time step, other than the control
of the integration error, which uses to be small, and
the number of required time steps, is small when com-
pared with explicit algorithms. On the other hand,
rnþ1, in Eqs. (1)–(3), uses to be highly non-linear in

terms of the main unknowns anþ1. This non-linearity is
inherited by Eq. (1) and the resulting solving algorithm
(typically a Newton–Raphson iterative procedure) often
can be made robust only by using very skillful proce-
dures (namely, continuation methods) and dramatic
shortenings of the time step values. In certain cases,
for instance when strain softening appears in the consti-
tutive model, the algorithm becomes so ill conditioned
that no convergence, and then no result, can be achieved
for problems of practical interest.

In summary: explicit integration schemes yield robust but

expensive (in terms of the computational cost) solving algo-
rithms, whereas implicit integration schemes lead to accu-
rate results, even for large time steps, but at the cost of a
loss of robustness of the resulting numerical algorithm
which, for cases of practical interest, can also dramatically
affect the corresponding computational cost.

This work proposes a combination of implicit and expli-
cit integration schemes that exploits the advantages of both,
while overcoming some of their drawbacks. In essence, it is
a combination of a standard implicit integration scheme of
the stresses, rnþ1, in the constitutive model in Eq. (3) with an
explicit extrapolation of the involved internal variables,
anþ1, in Eqs. (2)–(3). The proposed implicit/explicit integra-
tion scheme, from now on shortened as IMPL-EX, is
presented based on two representative families of rate-inde-
pendent material constitutive models: continuum damage
models and elasto-plastic models. However, this does not
imply intrinsic restrictions in terms of its application to
other families of inelastic constitutive models.

At the cost of few, and simple, additional operations, to
be performed at the constitutive driver level, the IMPL-EX
algorithm, renders relevant benefits when it is conveniently
exploited in computational mechanics. They can be sum-
marized as follows:

� The algorithmic tangent constitutive tensor becomes
symmetric and semi-positive definite even in those cases
as the analytical one is not. This leads to dramatic
improvements of the robustness in problems where
implicit integrations result in singularity or the negative
character of the algorithmic tangent operators.
� In many cases, the algorithmic tangent constitutive ten-

sor becomes constant. Therefore, in absence of sources
of non-linearity other than the constitutive model, the
complete non-linear problem reduces to a sequence of
linear (at every time step) problems. The classical New-
ton–Raphson procedure takes a unique iteration to con-
verge and the problem becomes step-linear. The effects
on the computational costs are also dramatic.
� The good stability properties of the implicit integration

algorithm are inherited by the proposed IMPL-EX inte-
gration algorithm.
� The order of accuracy of the IMPL-EX integration algo-

rithm, with respect to the size of the time step, is, at
least, linear; the same as many classical backward-Euler
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