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a b s t r a c t

Particle-Resolved Direct Numerical Simulation (PR-DNS) is employed to simulate momentum and energy
transport in bi-disperse gas-solid suspensions by means of a novel hybrid immersed-boundary/fictitious
domain (HFD-IB) method. First, we demonstrate the accuracy of the new HFD-IB method against several
verification tests. Subsequently, we simulate momentum and energy transfer in bi-disperse suspensions
in the limit of high Stokes number, and the predicted flow and temperature fields are used, in conjunction
with the open-source parallel data processing library CPPPO (Municchi et al., 2016), to assess the validity
of existing closures for momentum and heat transfer in the frame of Particle-Unresolved Euler-Lagrange
(PU-EL) models. We propose a correction to the drag force model proposed by Beetstra et al. (2009) which
consistently takes into account the pressure contribution to the total fluid-particle interaction force in
PU-EL models. Also, we propose a stochastic closure model for the per-particle drag coefficient based
on a modified log-normal distribution. Finally, we assess the existence of an analogy between the
particle-based drag coefficient and the conditionally-averaged Nusselt number. Indeed, our PR-DNS data
indicates that a stochastic closure similar to that for the drag can be used to close the particle-based
Nusselt number in dense bidisperse suspensions.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical simulations of large scale particle flows, which are
widely encountered in industrial applications, are normally per-
formed using averaged equations of motion. In these descriptions
the solid and fluid phases are modeled as interpenetrating con-
tinua [3]. These models are normally based on the kinetic theory
of granular flows [4] and contain unclosed terms that have to be
modeled somehow. In a multi-scale approach [5,6], these models
can be derived from more detailed simulations where particles
are described as a discrete phase. In particular, in case the trajec-
tory of each particle is tracked and collisions are resolved, one
obtains the so-called Computational Fluid Dynamics-Discrete Ele-
ments Method (CFD-DEM) that, in case fluid cells are larger than
particle diameters, can also be referred to as the Particle-
Unresolved Euler-Lagrange approach (PU-EL) [7–13]. However,
even PU-EL equations have several unclosed terms, like the inter-
phase transport coefficients, that account for, for example, fluid-
particle heat and momentum transfer. Following the multi-scale
paradigm in our present contribution, we seek to obtain certain

closures from fully resolved simulations, i.e., where the detailed
flow and temperature (or concentration) fields are resolved on a
sub-particle level. This latter approach can be denoted as
Particle-Resolved Euler-Lagrange (PR-EL), or Particle-Resolved
Direct Numerical Simulation (PR-DNS) if turbulence models are
used or not, respectively. PR-DNS has already been extensively
used to derive closures for the drag coefficient in mono- and
bi-disperse suspensions [14,2,15], or for the Nusselt/Sherwood
number in mono-disperse suspensions [16–20]. However, almost
the totality of this previous work focused on closures for Euler-
Euler-based simulations in a coarse scale. Naturally, the question
arises of the same closures can be used for PU-EL simulations,
and we will demonstrate that indeed this is not the case.

1.1. Upscaling and closure development strategies

A major difference between closures for Euler-Euler and PU-EL
models is that the latter require a particle-based description of the
interphase transfer processes, while the former (i.e., EE models)
require average exchange coefficients. Thus, particle-based models
are affected by per-particle fluctuations that arise simply due to
the random arrangement of individual particles, and occur even
in low-Reynolds number flows. When developing closures for con-
tinuum formulations, these quantities, are obtained from averages
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within each realization, so that the fluctuations in the particle pop-
ulation are lost and the final standard deviation is calculated based
on the ensemble of realizations. On the contrary, closures for PU-EL
models are based on the whole studied population and thus, they
may require stochastic models to take into account the single par-
ticle variability [14,21].

The process of upscaling of fluid quantities that we adopted is
known as (spatial) filtering or coarse-graining [22]. The local
domain where this operation is performed (in PR-DNS) can be
identified with a fluid cell used in PU-EL. In general, closure mod-
els derived using this approach have a functional dependence on

the filter size, i.e., the support of the filtering kernel or, in other
words, the size of the coarse-grained cell [8]. Moreover, while
the velocity field is statistically homogeneous in homogeneous
particle configurations, the temperature field is generally
inhomogeneous [19,20]. This is in contrast with the assumption
of separation of scales required for the development of contin-
uum formulations, e.g., Euler-Euler models, and poses a challenge
also in the development of particle-based models such as PU-EL-
based models. In the present work we refer to this issue as satu-
ration, since this term does reflect the physical process that is
behind.

Nomenclature

Abbreviations
CFD computational fluid dynamics
DEM discrete element method
DNS direct numerical simulation
EL Euler-Lagrange
HFD-IB hybrid fictitious-domain/immersed-boundary
PR particle-resolved
PU particle-unresolved

Greek characters
a log-normal standard deviation [–]
b log-normal lower bound [–]
g particle diameter [–]
c correction function
j tortuosity [–]
K interphase saturation coefficient [–]
ko characteristic fluid-particle system length [–]
m fluid kinematic viscosity [m2=s]
X computational domain
x relaxation factor [–]
/ volume fraction [–]
Um marker field
Us sampled field
q phase density [kg=m3]
r scaled standard deviation [–]
H saturation margin [–]
h fluid temperature [–]
. filter size [–]

Latin characters
f total interphase force [–]
u velocity field [–]
Ci ensemble conditional averaging Kernel [–]
M coefficient matrix [–]
U discrete binning set [–]
P modified log-normal distribution
A surface [m2]
Ap specific exchange surface [1/m]
cp fluid thermal capacity [J/kg K]
d particle diameter [m]
dcs distance between cell c and particle surface [m]
F interphase drag coefficient [–]
FB Beetstra interphase drag coefficient [–]
Fcorr corrected interphase drag coefficient [–]
h CFD cells per particle diameter [–]
I indicator function [–]
K kernel function
k heat conductivity [W/mK]
Np number of particles [–]
Nu Nusselt number [–]
Nubi bi-disperse Nusselt number [–]

p pressure [–]
Pe Peclet number [–]
PeL longitudinal Peclet number [–]
Pr Prandtl number [–]
Q interface heat transfer rate [–]
r radial coordinate [m]
Re Reynolds number [–]
s HFD-IB interpolation distance [m]
T temperature [K]
t temporal coordinate [–]
Us superficial velocity [m/s]
v particle velocity [m/s]
V CFD cell volume [m3]
x; y; z cartesian coordinates [–]

Subscripts/superscripts
ðconsÞ consistent
} evaluated from the HFD-IB algorithm
Um;j evaluated using discrete marker field at j
Deen;Gunn; Sunn refers to one of these correlations
F relative to the drag force
G global quantity
mix relative to the homogeneous mixture
Nu relative to the Nusselt number
� dimensional quantity
0 reference value
32 mean Sauter quantity
rp contribution from pressure gradient
Um evaluated using marker field
b bulk quantity
c property related to CFD cell c
d contribution from drag
f property related to fluid phase
g quantity related to the whole domain (global)
I imposed value
i property related to particle number i
k property related to particles specie k
M property related to particles with the largest radii
m property related to particles with the smallest radii
n quantity at time step n
p property related to particle phase
P1; P2 property interpolated at point P1 or P2
s property evaluated at particle surface
sat value at saturation

Averaging/filtering operators
ð�Þh i ensemble average
ð�Þh iU ensemble average conditional on U

ð�Þ volume averagecð�Þ flux averagefð�Þ Favre average
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