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a b s t r a c t

In the case of conjugate heat transfer, the dissipation rate associated with the temperature variance is
discontinuous at the fluid-solid interface. The discontinuity satisfies a compatibility condition involving
the fluid-solid thermal diffusivity and conductivity ratios and the relative contribution to the dissipation
rate of its wall-normal part. The present analysis is supported by the Direct Numerical Simulations of an
incompressible channel flow at a Reynolds number, based on the friction velocity, of 150, a Prandtl num-
ber of 0.71 and several values of fluid-solid thermal diffusivity and conductivity ratios.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Conjugate heat transfer describes the thermal coupling between
a fluid and a solid. It is of prime importance in industrial applica-
tions where fluctuating thermal stresses are a concern, e.g. in case
of a severe emergency cooling or long-term ageing of materials. For
such complex applications, investigations often rely on experi-
ments, high Reynolds RANS (Reynolds-averaged Navier-Stokes) or
wall-modelled LES (Large Eddy Simulation). However, experimen-
tal data on conjugate heat transfer are scarce. Walls in lab rigs are
often made of plexiglas and the transported scalar studied is often
a dye. These common experimental configurations cannot be used
to study conjugate heat-transfer as the dye does not penetrate into
the wall. Analytical analysis and DNS (Direct Numerical Simula-
tion) are valuable tools for understanding the flow physics of such
complex phenomena and providing reliable data in order to
improve RANS and LES modelling.

Numerical study on conjugate heat transfer started with the 2D
synthetic turbulence study of Kasagi et al. [1]. Some experimental
and analytical studies have been performed prior to this study, in

particular Polyakov [2] and Geshev [3], as documented by [1].
The first DNS with conjugate heat transfer was a turbulent channel
flow, performed by Tiselj et al. [4]. Following those studies, the
authors [5] have also performed DNS of the turbulent channel flow
with conjugate heat transfer, with a post-processing designed to
produce validation data for RANS models.

The development of RANS approaches for conjugate heat trans-
fer is relatively recent and was pioneered by Craft et al. [6]. In order
to allow an accurate estimation of the fatigue, (U)RANS models
adapted to conjugate heat transfer should enable the simulation
of at least a few minutes of operation in realistic conditions, in
order to include as much high stress amplitude events as possible,
knowing they generally are low probability events [7].

The structure of the paper is as follows. In the second section, it
is established that in case of conjugate heat transfer, the dissipa-
tion rate associated with the temperature variance is discontinu-
ous at the fluid-solid interface. This discontinuity satisfies a
compatibility condition involving the fluid-solid thermal diffusiv-
ity and conductivity ratios and the relative contribution to the dis-
sipation rate of its wall-normal part. In the third section, the case
and numerical setup are described: 9 DNS of incompressible chan-
nel flow with conjugate heat transfer are presented. In the fourth
section, the corresponding results are presented and the disconti-
nuity of the dissipation rate eh at the fluid-solid interface is high-
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lighted. In the fifth section, our results are further discussed along-
side with the consequences for RANS and LES modelling.

2. Governing equations and discontinuity of eh

In the fluid domain (Xf ), the mass and momentum equations
read:

@iui ¼ 0

@tui ¼ � @ j uiuj
� �þ uj@jui

2
� @ ip

q
þ m@ jjui þ f i ð1Þ

where q is the density, m is the kinematic viscosity, the convective
term is expressed using the skew-symmetric formulation and f i is
a source term.

In case of conjugate heat transfer, the energy equations read:

@tTf ¼ �@j Tf uj
� �þ af@jjTf þ f Tf in Xf

@tTs ¼ as@jjTs þ f Ts in Xs

Tf ¼ Ts on @Xf \ @Xs

kf @nTf ¼ ks@nTs on @Xf \ @Xs ð2Þ
where Xf (Xs), Tf (Ts), af (as) and kf (ks) are the fluid (solid) domain,
temperature, thermal diffusivity and thermal conductivity, respec-
tively, f Tf and f Ts are source terms and @nT ¼ r Tð Þ � n is the wall-

normal derivative of the temperature with n a unit vector normal
to the fluid-solid interface surface (@Xf \ @Xs), r being the gradient
operator. The last 2 lines in Eq. (2) express the continuity of temper-
ature and heat flux at the fluid-solid interface.

Within this context, the dissipation rate eh;f (eh;s) associated
with the temperature variance in the fluid (solid) domain can be
defined:

eh;f ¼ 2afr T 0
f

� �
� r T 0

f

� �
in Xf

eh;s ¼ 2asr T 0
s

� � � r T 0
s

� �
in Xs ð3Þ

where T 0 and the overline are the fluctuating part of the tempera-
ture T and the averaging operator, respectively. Using the continuity
of temperature and heat flux at the fluid-solid interface, it is
straightforward to show that the dissipation rates satisfy the fol-
lowing relation:
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Using the thermal properties a and k, dimensionless numbers
can be derived. Following Flageul et al. [5], one defines G as the
fluid-to-solid thermal diffusivity ratio and G2 as the solid-to-fluid
thermal conductivity ratio:

G ¼ af

as
; G2 ¼ ks

kf
ð5Þ

Combining G and G2, one may obtain the thermal activity ratio K

(1K ¼ G2

ffiffiffiffi
G

p
) as defined by Geshev [3] and Tiselj et al. [4], which is

also the fluid-to-solid thermal effusivity ratio. On this basis, Eq.
(4), combined with the definition of eh;f in Eq. (3) turns to:
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It is important to stress that n is locally well-defined as long as
the fluid-solid interface surface is flat or curved but becomes ill-
defined for instance at the edge of a corner. Therefore, in case of
conjugate heat transfer, the dissipation rate eh at the fluid-solid
interface satisfies the compatibility condition (6) for any smooth
interface.

In the following, any ratio eh;s
eh;f

– 1 corresponds to a discontinuity

of the dissipation rate eh across the fluid-solid interface. It is impor-
tant to stress that the relative contribution of the wall-normal part
in eh;f is bounded in ½0;1�. Therefore, Eq. (6) is a convex combina-

tion between 1
G and K2.

On the one hand, if the conjugate case is close to an imposed
temperature one (conducting solid, G2 � 1), then the wall-
normal contribution in eh;f dominates at the interface and the dis-
continuity scales with the squared thermal activity ratio K. On the
other, if the conjugate case is close to an imposed heat flux one
(insulating solid, G2 � 1), then the wall-parallel contribution in
eh;f dominates at the interface and the discontinuity scales with
the inverse of the thermal diffusivity ratio G. For the other cases,
the discontinuity is bounded by 1

G and K2. This range may be quite
extended, for instance, considering pressurized water as the fluid
and steel as the solid, approximate values are K2 � 0:01 and
1=G � 60.

3. Case and numerical setup

Present simulations are based on the open-source software
Incompact3d developed at Université de Poitiers and Imperial Col-
lege London by Laizet et al. [8,9]. Sixth-order compact schemes are
used on a Cartesian grid stretched in the wall-normal direction.
The pressure is computed with a direct solver on a staggered grid
while velocity components and temperature are collocated.

In the present study, x; y and z stand for the streamwise, wall-
normal and spanwise directions, respectively, as sketched in
Fig. 1. Periodic boundary conditions are used in the streamwise
and spanwise directions. The source term driving the channel flow
is present only in the streamwise direction: it is a constant in space
and time fitted so that the averaged bulk velocity is 1. This source
term physically represents the mean pressure gradient compensat-
ing the viscous friction at the wall in order to reach a statistically
steady state. The channel half-height is also 1, and the Reynolds
number based on those quantities is 2280, while the Prandtl num-
ber is 0.71 and the density is 1.

The main simulation parameters are recalled in Table 1 and
compared with reference ones [10,4]. As described in Flageul
et al. [5], the scalar diffusion scheme used is 4th order accurate
in the streamwise direction and 6th order accurate in the others.
Compared to the simulation from Kasagi et al. [10], our domain
is 63 % longer, 35 % wider while we use cells of a similar size. In
addition, the duration of our simulation is almost 14 times longer
while our time step is 6 times smaller. This point is further dis-

Fig. 1. Sketch of the computational domain.

322 F. Cédric et al. / International Journal of Heat and Mass Transfer 111 (2017) 321–328



Download English Version:

https://daneshyari.com/en/article/4994076

Download Persian Version:

https://daneshyari.com/article/4994076

Daneshyari.com

https://daneshyari.com/en/article/4994076
https://daneshyari.com/article/4994076
https://daneshyari.com

