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a b s t r a c t

The half-boundary method (HBM) which reduces the order of partial differential equations, is extended
with detailed formula derivations to solve heat transfer problems. The method has a comparable accuracy
with analytical solution even when a few nodes are involved in calculation. And it also saves more time
than finite volumemethod (FVM). HBM can separately calculate the field variables at any point of interest
in the domain without uniform mesh or dimensional length. Variables at any node within the domain are
associated with those on one of the two boundaries. For one-dimensional problems, only two-order
matrices are calculated in HBM instead of huge-order matrices required in FMV. Therefore, this method
shows great potential in accurate and efficient calculating multi-dimensional heat transfer and fluid flow
problems with complex geometries and huge grids. In this paper, we introduce the fundamental theory
and test the applicability, accuracy and efficiency of HBM by solving six simple one-dimensional prob-
lems, one two-dimensional problem and one practical problem of the temperature field simulation of
double vessels in China Experimental Fast Reactor (CEFR), which can give a universal sense for more com-
plex problems. ANSYS simulation is also utilized to verify the accuracy of HBM. Matlab codes are used.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Routinely used numerical methods such as finite difference
method (FDM) [1,2], finite volume method (FVM) [3–6] and finite
element method (FEM) [2,7,8] are marching their way in solving
heat transfer and fluid flow problems both in macroscopic and
mesoscopic areas such as heat conduction problems in nuclear
reactors [9–12] and nano-fluid convection problems in microelec-
tronic devices [13–17]. Among these methods, FVM has become a
mainstream method due to its definite physical interpretation. But
FVM produces a high-order matrix, leading to a high workload,
especially when large number of grids are involved in calculation.
Despite the tremendous developments and achievements in com-
puter capacity, it is still cost inefficient in terms of handling intri-
cate models coupled with complex geometries, variable boundary
conditions and multi-physics interactions. And the total processing
duration is more important if transient problems are considered.

To improve the computation accuracy, the commonly used
technologies are increasing the grid numbers or adopting higher-

order terms of partial differential equations to reduce the trunca-
tion error. However, these technologies inevitably increase the
computation time. Therefore, some researchers chose to increase
the grid numbers at certain zone of the domain [18], or deduced
the high-order discrete equations for the boundary nodes [19].
But these improvements are only applicable to certain cases and
models, and still cannot balance the accuracy and efficiency at
the same time. As for the boundary nodes, approximation calcula-
tion is still commonly adopted. The accuracy hence cannot be guar-
anteed if few grids are involved.

As for increasing the calculation efficiency, the modified meth-
ods are mostly on the contrary to those utilized to increase the
computation accuracy. One aspect is aimed at reducing the effort
devoted to mesh generation which would be the most taxing part
for a complex model. For example, Langmayr et al. [20] modified
the mesh at certain parts of the complex geometrical model and
reduced the grid numbers. Kim et al. [21] utilized a double-grid
method for efficient computation of a phase-field model.

The other meaningful simplification is to modify the formulae
by partially changing the equations [22,23] or totally reducing
the order of equations. Compared with the former which usually
accounts for particular cases, the reduced order model is more effi-
cient because it can reduce the freedom degrees and convert the
calculation of partial differential equations to the calculation of lin-
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ear equations in a lower-dimensional space. Berntsson [24]
achieved the solutions to one-dimensional inverse heat conduction
problems. Wang et al. [25] established a reduced order model for
steady-state heat convection using proper orthogonal decomposi-
tion (POD) and Galerkin projection methods. But the shape func-
tions are necessary in Galerkin methods.

In this paper, HBM [26–29] is extended for solving heat conduc-
tion problems, and the detailed equations are derived. It handles
the higher-order derivatives as independent variables. In this
way, only second-order matrixes are involved in the calculable
process of HBM, which avoids the building of complex matrix
and arduous matrix inversion that required in FVM. Also, the tem-
perature and heat flux fields can be solved simultaneously. In addi-
tion, HBM can solve problems with different boundary types and
the problems with two conditions on only one-side boundary,
because the calculation marches from one side to the other. No
uniform grid or certain node length is required. HBM can calculate
the variable fields at any point of interest in the domain without
solving the results for all the nodes, which makes it more flexible.

2. Half-boundary method

As a fundamental research, one-dimensional problems includ-
ing a practical case are intensively studied in this paper. And then
the HBM is expanded to a two-dimensional steady-state problem
with linear material properties and temperature boundaries.

2.1. One-dimensional HBM

One-dimensional heat conduction equation of HBM in a Carte-
sian coordinate can be written as follows:

qðx; TÞcðx; TÞ @T
@t
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@x
kðx; TÞ @T
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where qðx; TÞ, cðx; TÞ and kðx; TÞ are the density, heat capacity and
thermal conductivity coefficients, respectively. For most of materi-
als, the properties are inconstant. In this paper, material properties
are simplified to be a function of temperature and location. sðx; tÞ is
the source term, and is assumed to vary with location and time.
While for steady-state condition, s is only the function of location.
The order of Eq. (1) is decreased by setting V ¼ kðx; TÞ @T

@x, and then
Eq. (1) is simplified as:
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@t ¼ @V
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@x

(
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For transient problems, the following initial and boundary con-
ditions are adopted:

T0ðxÞ ¼ gðxÞ; t ¼ 0 ð3Þ

TWðtÞ ¼ f 1ðtÞ; t > 0 ð4Þ

VWðtÞ ¼ f 2ðtÞ; t > 0 ð5Þ

VWðtÞ ¼ hðtÞðTWðtÞ � T1ðtÞÞ; t > 0 ð6Þ
where Eq. (3) is the initial boundary when time = 0 s, g(x) is known.
Eq. (4) is the first kind boundary, where TW is the temperature at
the boundary location, f 1ðtÞ is known. Eq. (5) is the second kind
boundary, where VW is the heat flux at the boundary location,
f 2ðtÞ is known. And Eq. (6) is the third kind boundary, hðtÞ is known,
TWðtÞ and T1ðtÞ are the temperature of interface and fluid.

To solve Eq. (2), the initial temperature distribution TðxÞ at t = 0
is known and the boundaries depend on the practical problems.
Integrating Eq. (2) from xi to x(i+1) and from tm to t(m+1), the follow-
ing expression is obtained:
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The one-dimensional model is discretized as shown in Fig. 1.
The derivatives can be simplified by the difference between two

different nodes as @Ti
@x ¼ Tmiþ1�Tmi

Dx and @Vi
@x ¼ Vm

iþ1�Vm
i

Dx . The time derivative
is also simplified by the difference between two different moments

as @Ti
@t ¼

Tðmþ1Þ
i

�Tmi
Dt , where Tðmþ1Þ

i indicates the temperature at xi and
t(m+1) moment (next time step) while Tm

i is the temperature at cur-
rent time step. In Eq. (7), V and T are functions of time. A weighted
interpolation of variables at two adjacent time moments is adopted
to approximate the average values as: T ¼ hT ðmþ1Þ þ ð1� hÞTm,
V ¼ hV ðmþ1Þ þ ð1� hÞVm, where h 2 ½0;1�. Therefore, the integral of
T and V over time can be written as:Z tðmþ1Þ

tm

Vdt ¼ ½hV ðmþ1Þ þ ð1� hÞVm�Dtm ð8Þ

Z tðmþ1Þ

tm

Tdt ¼ ½hT ðmþ1Þ þ ð1� hÞTm�Dtm ð9Þ

The different values of h account for the different weights of
tðmþ1Þ and tm moments. When h ¼ 0, the average variables only
depend on current moment tm which is called pure explicit
Euler method. While for h ¼ 1, the average variables equal to the
values at next time moment tðmþ1Þ which is called pure implicit
Euler method. While for h ¼ 1=2, it is the Crank-Nicolson method

Nomenclature

S heat source term
s heat source value, W/m3

T, X1 temperature, K
V, X2 heat flux, J/(m2 s)
W, X2 heat flux, J/(m2 s)
k thermal conductivity coefficient, W/(m K)
h convective heat transfer coefficient, W/(m2 K)
c heat capacity, J/(kg K)
q density, kg/m3

x x coordinate, m
y y coordinate, m

Dx distance between adjacent nodes in x direction, m
Dy distance between adjacent nodes in y direction, m
t time, s
Dt time step, s

Subscripts
i, i � 1 grid node

Superscripts
m, m � 1 time moment
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