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a b s t r a c t

This paper presents a non–intrusive inverse heat transfer procedure for predicting the time–varying heat
flux on the surface of semitransparent media. Inverse radiation–conduction problems were analyzed
using a Kalman filter coupled with a recursive least–square estimator (KF–RLSE). Since its unique capa-
bility to make fast predictions, KF–RLSE can be easily integrated to existing real–time control systems of
industrial facilities. The performance of KF–RLSE was examined thoroughly in a series of numerical sim-
ulations in two semitransparent materials (i.e. the glass with black coating and the ceramic of zirconium
dioxide ZrO2) to extract the time–varying surface heat flux on–line from the measured temperature his-
tory at boundary. Results showed that the proposed method can predict the unknown boundary flux with
an acceptable error. The influence of different parameters on the accuracy and stability of the predicted
heat flux was also investigated. Results indicated that the sensor location, process noise covariance and
absorption coefficient exerted stronger effects on retrieval results compared with other parameters.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, on–line tracking of the time–dependent
boundary heat flux or other physical parameters has attracted sig-
nificant attention because of its wide applications in many indus-
trial and engineering fields, such as in the time–varying heat flux
measurement of high–speed continuous emission of barrel tubes
or highly–integrated electronic products, the internal temperature
monitoring of engine combustion chambers, the flame tempera-
ture detection in coal–fired furnaces, the internal temperature
variation measurement of tissues irradiated by lasers, and estimat-
ing the time–varying phase thickness and shape of banks in high
temperature heating furnace, to name a few [1–7]. With the need
to estimate the history of unknown properties in real time, the
recursive input estimation algorithm of digital estimation theory
based on the Kalman filter (KF) technique and the recursive
least–squares estimation (RLSE) was developed [8]. In theory, the
KF technique coupled with RLSE is by virtue of recursive algorithm;
thus, an on–line estimation can be employed in place of off–line
estimation. It is computationally efficient because it has a simple
mathematical formulation and only needs the measurement infor-
mation at current moment. In previous years, sustained efforts

have been aimed at estimating the boundary heat flux by using fil-
tering–based methods owing to their remarkable characteristics.
As an efficient method for various real–time controls, filtering
technology was first introduced by Beck [3–5] to solve inverse heat
conduction problems (IHCPs). Filtering technology is not only a
new method of solving IHCPs, but also a representation of the
solution in a form suitable for continuous (on–line) processing of
data. Ji et al. [9] applied KF coupled with RLSE (KF–RLSE) to
retrieve the boundary heat flux of the transient heat transfer on
a one–dimensional (1D) slab successfully. Since then, KF has drawn
much attention and numerous studies have focused predicting the
time–varying heat flux by using KF. Ijaz et al. [10] employed KF to
solve a two–dimensional (2D) transient IHCPs. Similarly, Chen and
Liu [11] employed a combination of KF and RLSE to determine heat
flux history on a rocket nozzle liner. Based on the basic KF method,
a variety of improved KF methods were developed to solve the
IHCPs. For instance, Daouas and Radhouani [12] have proposed
an extended KF with augmented state to predict the input heat flux
imposed at the boundary of stainless steel. Chen et al. [13] utilized
the extended KF coupled weighted recursive least square method
to retrieve the time–varying boundary heat flux of nonlinear heat
conduction problems with high precision. Jang and Cheng et al.
[14] combined the extended KF with RLSE to predict the on–line
heat dissipation of an electronic device. Moreover, Wang et al.
[15] applied the extended KF coupled with the RLSE to predict
the heat flux imposed on a 1D slab. Aside from determining the
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heat flux, considerable attention has also been given to estimation
of the time–varying thickness in high temperature phase change
procedure by using KF–based techniques. For example, LeBreux
et al. [16] applied KF–RLSE to estimate the thickness of a time–
varying bank in a high temperature heating furnace for the real–
time control of the bank in the optimal thickness. Evidently, an
accurate estimation of the time–varying bank thickness is impor-
tant to improve the production efficiency and avoid safety acci-
dents. They [17,18] also employed three KF models, i.e., a
nonlinear unscented KF, a nonlinear extended KF, and a linear KF,
to use the inverse heat transfer method in predicting the ledge
thickness inside high–temperature metallurgical reactors. As they
pointed out, the predictions of the unscented KF are more accurate
than those of the linear KF, and more stable than those of the
extended KF, and its CPU time requirement is comparable with
that of other KF models. Recently, Noh et al. [19] have employed
KF to determine heat flux history on a barrel tube. They found that
the KF model has higher inversion accuracy when the direct prob-
lem is solved using the thermal resistance network method instead
of the finite element method, which proves that the inversion
accuracy is highly related to the forward model.

In sum, all the studies above have focused on solving the pure
conduction or phase change problems in various applications by
using KF–based methods. Nowadays, semitransparent media (e.g.,
thermal insulation ceramics, glass melt, molten salt, and porous
media) have been widely utilized in high–tech industrial and sci-
entific fields, especially in ultra–high–speed aircraft and space

shuttle [20]. For practical purposes, on–line tracking the time–
varying heat flux or temperature distribution in such semitrans-
parent media is urgently needed and has received considerable
treatment in recent decades [21]. For example, worthy design of
aerospace thermal protection systems (TPS), which is composed
of semitransparent materials, largely depends on the ability to
accurately predict and understand the transient coupled radia-
tion–conduction heat transfer phenomena that accompany
shock–shock interactions and atmospheric re–entry [22,23]. Accu-
rate knowledge of the transient flux profile within a thermal bar-
rier coating (TBC) is critical in evaluating the performance and
monitoring the health of a TBC [24,25]. Meanwhile, the primary
heat transfer mechanism to the aero optical–thermal effect from
a hypersonic vehicle is thermal convection from the high–speed
air to the window surface, which exhibits a highly nonlinear
behavior [26]. The time–resolved heat flux acting on the surface
wall, which is dominated by the coupled radiation–conduction
heat transfer in the semitransparent optical window, is of great sig-
nificance for thermal control or design and difficult to probe man-
ually from the internal wall temperature. Difficulties with probing
the time–varying heat flux manually from the internal wall tem-
perature measurement have resulted in the lack of an on–line
inverse model for addressing this issue. How to estimate the
time–varying temperature of the heating surface is very important
for the optimal design of optical window’s material and structure,
in which the coupled conduction–radiation heat transfer should be
taken into account [27–29]. However, to the best of our knowledge,

Nomenclature

A coefficient matrix
B sensitivity coefficient
C coefficient matrix
cp the specific heat, J=kg K
E total element number
F coefficient matrix
G the incident radiation, W/m2

h the convectional heat transfer coefficient, W/m2 K
H measurement matrix
I the radiative intensity, W/(m2 sr)
I identity matrix
k time (discretized), s
K the Kalman gain
Kb the steady–state correction gain
L the medium thickness, m
M the sensitivity matrix
n the refractive index of the media
N coefficient matrix
P the filter’s error covariance matrix
Pb the error covariance matrix
q the heat flux, W/m2

bq the estimated input vector, W/m2

qr the radiation heat flux term, W/m2

Q process noise covariance
R measurement noise covariance
s innovation covariance
t time, s
T temperature, K
TS ambient temperature, K
T0 initial temperature, K
U coefficient matrix
w process noise vector
x the x–axis coordinate
X the state vector

X the input estimator
Z the observation vector
Z the bias innovation

Greek symbols
b the extinction coefficient, m�1

c the forgetting factor
e the boundary emissivity
ja the absorption coefficient, m�1

k conductivity, W/(m K)
v measurement noise vector
q density, kg/m3

r the Stefan–Boltzmann constant
rs the scattering coefficient, m�1

rR standard deviation
U state transition matrix
UðX0;XÞ scattering phase function
X the solid angle, sr
x scattering albedo or the inertia weight factor
C input matrix

Superscripts
0 the last moment
k time, s
T transpose of a matrix

Subscripts
b blackbody
E, P, W the position of node
n element number
w1 the left boundary
w2 the right boundary
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