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a b s t r a c t

We study heat transfer through a composite with periodic microstructure. The thermal conductivity of
the constituents is assumed to be temperature-dependent, and it is modeled as a polynomial in terms
of the temperature. The thermal resistance between the constituents is taken to be nonlinear. In order
to determine the effective thermal properties of the material, we apply the asymptotic homogenization
method. We discuss different approaches to determine these effective properties for the different volume
fractions of the inclusions. For high volume fractions of the inclusion, we apply the lubrication theory. In
the case of low volume fractions of the inclusions, we apply the three-phase model. Comparing some spe-
cial cases of our results to existing ones in the literature shows a good accuracy.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling of the thermal properties of composites might be
challenging, especially when the size of the heterogeneities is sig-
nificantly smaller than the macroscopic size of the considered
structure. In order to simplify the treatment of heat diffusion prob-
lems, different approaches have been developed, in which the orig-
inal heterogeneous material is replaced by a homogenized or
effective material with the same macroscopic properties as the
original heterogeneous material. Early works on this topic are, for
example, the works of Hershey [1], Hill [2], Kerner [3], Kröner
[4], Keller [5], and van der Poel [6]. Examples for works on compu-
tational homogenization are article of Özdemir et al. [7], and the
work of Geers et al. [8] discusses some trends and challenges in
this field.

A powerful and wide-spread technique denoted as the asymp-
totic homogenization method (AHM) has been developed in order
to obtain the effective properties of different asymptotic orders of
heterogeneous materials with periodic microstructures. The theory
behind this technique is described, for example, in the books of
Bensoussan et al. [9] and Panasenko [10]. The AHM allows to inves-
tigate a macroscopic boundary value problem within a single
repeated unit cell of the microstructure. In this approach, a small

parameter is introduced, which relates the size of the hetero-
geneities to the size of the macroscopic problem. The original coor-
dinate variables are then replaced by so-called fast coordinate
variables, which consider the problem on the micro-scale, and by
slow coordinates, which consider the problem on the macro-
scale. The AHM has been applied to analyze different types of
homogenization problem, for example to investigate wave propa-
gation in fiber-reinforced composites [11,12]. There also exist
numerous articles, which have applied the AHM to determine the
effective thermal properties of composites, for example, Allaire
[13] and Zhang et al. [14]. Telega et al. [15] applied the AHM to
study heat transfer, which is formulated as a minimization prob-
lem. Gałka et al. [16] took temperature-dependent thermal param-
eters of the constituents in the homogenization procedure into
account. Allaire and Habibi [17] and Yang et al. [18] analyze heat
transfer in porous materials, and they include conduction, convec-
tion, and radiation into their considerations. A popular method to
investigate the effective properties of composites with a low vol-
ume fraction of the inclusion phase is denoted as the three-phase
model [19]. The application of such model for the AHM has been
discussed and justified in [20]. If the volume fraction of the inclu-
sions approach its maximum, then the close packing model [21],
also denoted as the lubrication theory, has been applied in differ-
ent works. A broader review of trends of the application of the
AHM to obtain the effective properties of composites is provided
by Kalamkarov et al. [22], who state that the different developed
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methods reveal their strengths and disadvantages, and therefore
these methods have to be treated as complementary tools.

The effective macroscopic properties result from the properties
and the distribution of the constituents, but also from the interac-
tion of the constituents. Composites might reveal thermal resis-
tance between the different constituents, which might for
example result from imperfect contact, cracks, or from an inter-
phase material. An early work on thermal interfacial resistance is
the article of Kapitza [23]. Examples for composites with coated
inclusions is micro-encapsulated paraffin-spheres, which has been
studied in different experiments on thermal regulations of build-
ings [24,25]. Theoretical modeling works on the effective thermal
properties, which consider such resistance, are, for example, Quang
et al. [26–28] and Andrianov et al. [29]. There exist different inter-
face models which have been taken into account in different stud-
ies, such as hybrid interphase regions [30], and inhomogeneous
interphases [31].

Our article is organized as follows: In Section 2 we introduce
the herein considered boundary value problem, the applied heat
diffusion model, and thermal resistance models. In Section 3 we
discuss the application of the AHM in order to obtain the effective
thermal parameters of the considered composite. The case of large
volume fractions of the inclusion is discussed in detail in Section 4,
as well as the case of a layered composite. Illustrative examples are
introduced to discuss the different features of the derived heat
propagation models. In Section 5 we apply the three-phase model
for composites with low volume fractions of the inclusions, and we
discuss the cases of parallel fibers and spherical inclusions in the
matrix. Special cases of our results are compared to known results
from the literature. In the final section, we discuss the obtained
results, and we provide a brief outlook.

2. Nonlinear heat diffusion in a composite

Consider a heterogeneous material with a periodic microstruc-
ture, which is assumed to consist of two constituents, the inclusion

Xð1Þ and the surrounding matrix Xð2Þ. In the framework of this arti-
cle we will mainly focus on inclusions of spherical shape, as shown
in Fig. 1, and on inclusions of cylindrical shape. In a Cartesian coor-
dinate system with the three base unit vectors fE1;E2;E3g, the
microstructure of the material can be described by repeated unit
cells in form of parallelepipeds of the lengths ‘k in the Ek-
directions, k ¼ 1;2;3. The volume of such unit cell then becomes

v ¼ ‘1‘2‘3. In the following, we want to study heat diffusion in such
composite. Section 2.1 gives a brief general summary on the
applied heat diffusion model, and Section 2.2 specifies such model
for heat diffusion in a composite. The interaction of the con-
stituents has a crucial role in the behavior of the overall thermal
properties, and we consider thermal resistance at the common

interface @Xð1;2Þ of Xð1Þ and Xð2Þ.

2.1. Summary of the heat equation model

The heat energy flux q ¼ qðTðx; tÞÞ for a material with isotropic
thermal properties is given by

qðTðx; tÞÞ ¼ �jðTðx; tÞÞ @Tðx; tÞ
@xk

; k ¼ 1;2;3; ð1Þ

where j ¼ jðTðx; tÞÞ is the thermal conductivity and T ¼ Tðx; tÞ is
the temperature at the location

x ¼ E1 x1 þ E2 x2 þ E3 x3; ð2Þ
at time t. Note that (1) represent a form of the heat flux equation in
which the thermal properties are taken to be independent from the
considered direction. We model the thermal conductivity
j ¼ jðTðx; tÞÞ as a function of the temperature, and therefore it is
taken to be a polynomial in terms of the temperature in the form

jðTðx; tÞÞ ¼
Ximax

i¼0

ai Tðx; tÞ½ �i ¼ a0 þ a1Tðx; tÞ þ . . . ; ð3Þ

where ai are constants. Such model has been applied, for example,
by Lienemann et al. [32], and this general form allows to describe
different types of effects: The first term of the right side of (3) is
the linear term, which is independent from the temperature. The
following higher-order terms define the temperature-dependence
of the conductivity. The number of terms in (3) depends on the
accuracy of the conductivity model in the considered temperature
range. If for example the considered temperature range is low, then
it might be sufficient to restrict (3) to the leading term. On a large
temperature range the thermal conductivity might reveal a strong
nonlinear behavior. To give an example, on the temperature range
from 0 Kelvin to its melting point, the conductivity of aluminum
strongly increases to its maximum, and then slowly decreases with
rising temperatures (see, for example, Table 3a in [33]). Thermal
conductivities in the form j ¼ amT

m;m ¼ 2;3; . . . have been studies
in different works, and for an overview of the different application
of the specific stipulations of this power law forms, we refer to Hris-
tov [34].

In the following we restrict the polynomial expansion of the
conductivity to imax ¼ 1, so that terms of an order higher than
explicitly shown on the right side of (3) will be neglected.

The heat equation which describes the nonlinear heat propaga-
tion is taken the formX3
k¼1

@

@xk
j

@T
@xk

� �
¼ qp

@T
@t

; ð4Þ

where qp ¼ qpðxÞ ¼ cp q is the product of the specific heat capacity
cp ¼ cpðxÞ and the mass density q ¼ qðxÞ of the material. While qp is
taken to be independent from the temperature in this article, this
shall be noted that this parameter reveals a strong temperature-
dependence in the case of phase-changes [25]. After the substitu-
tion the specific stipulation of the thermal conductivity (3) for
imax ¼ 1 into the heat Eq. (4), we obtain a nonlinear heat equation
in the formX3
k¼1

a0
@2T
@x2k

þ a1
@T
@xk

� �2

þ T
@2T
@x2k

" #( )
¼ qp

@T
@t

: ð5ÞFig. 1. A single unit cell of the periodic composite microstructure: The inclusion
Xð1Þ is surrounded by the matrix Xð2Þ . The interface between Xð1Þ and Xð2Þ is denoted
as @Xð1;2Þ , and n is the outer normal unit vector to the inclusion.
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