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a b s t r a c t

This paper presents new formulation for simulating three-dimensional convective heat transfer by incor-
porating the complete viscous dissipation function in the energy equation to account for viscous heating
and adopting the Boussinesq approximation for the thermal buoyancy term in the Navier-Stokes equa-
tions. In addition, new implementation of fourth order Stiffly Stable Schemes was achieved and tested
for time integration. In order to provide dual-level mesh refinement, the hp-refinement, for flexible spa-
tial resolutions, a modal spectral element method was used to solve these equations in three dimensions.
Simulation results were compared with exact solutions or higher order solutions and good agreement
were accomplished. This demonstrates that the new formulation and implementation are accurate
enough for investigating convective heat transfer with viscous heating subject to complex thermal and
flow boundary conditions in three dimensional irregular domains using the high order version of finite
element method.

Published by Elsevier Ltd.

1. Introduction

Among all the worldwide processes of energy productions and
consumptions, about 80% involves heat transfer especially convec-
tive heat transfer. Therefore, enhancing the efficiency of heat trans-
fer processes could potentially elevate energy conservation in
relevant thermo-fluids engineering [1–6]. Historically, engineering
studies of heat transfer processes have been mainly analytically,
experimental, empirical or semi-empirical due to technical issues
and difficulties [7–10]. In the last three decades with the vast
development of computing power, numerical approaches have
become one important alternative.

Viscous heating plays an important role in heat transfer espe-
cially when the viscosity, shear rate, or temperature gradient is
large due to the strong coupling between the energy and momen-
tum equations [11,12]. The heat produced by viscous friction,
although small overall, increases the local temperature especially
near walls and boundary layers, and decreases the viscosity, and
therefore, could dramatically alter local gradients of temperature
and velocity [11]. Under certain circumstances, once the rate of

heat generation exceeds the rate of heat dissipation into the sur-
rounding environment, the detrimental phenomenon, thermal
runaway, also called thermal explosion, could happen [13,14].
Thermal runaway is usually an undesirable process accelerated
by the increased temperature which in turn releases more heat
and further increases temperature. 3D molecular dynamics simula-
tions of heat and momentum transfer involving viscous heating in
nanoscale shear flow were conducted in [15].

Although there are many valuable analytical studies on viscous
heating, most of them are two-dimensional (2D). Effects of the vis-
cous dissipation were analyzed in 2D with perturbation solution of
the governing equation in [16]. The explicit and implicit stabilities
of Exact Linear Part schemes for advectiondiffusion equations were
studied in [17]. A perturbation method was used to obtain the 2D
analytical solution of the momentum and energy equations in [18]
and perturbation expansions with respect to a buoyancy parameter
were used to analytically evaluate velocity and temperature fields
in [19] for convective flows in vertical channels. A 2D study of ther-
mal mechanical effects due to viscous heating in tubes of finite
length was completed in [11]. A 2D analytical study on steady
magnetohydrodynamics (MHD) flow under convective heating
reported more pronounced viscous dissipation effect in nonslip
or partial slip flows than slip flows [20]. Another 2D theoretical
analysis [21] indicated that viscous dissipation is important for
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flows of relatively large velocities with either the clear fluid model
or the Brinkman model.

Handling linear and nonlinear terms separately gains an advan-
tage in numerical heat transfer. Some heat transfer problems are
mathematically stiff [22] in the sense that there is a slower process
which usually is the heat conduction in thin boundary layers
although confined natural convection could be slow as well, and
a faster process such as convective mixing. The slower one is math-
ematically linear and could be handled implicitly with a large time
step for fast convergence and improved stability. However, the fas-
ter part requires a smaller time step for stability reasons and usu-
ally needs an explicit approach to handle the nonlinearity.
Therefore, Stiffly Stable Schemes become a good choice in time dis-
cretization. Some improvement in linear multistep schemes was
reported in [23] where no historical derivative information was
required in time integration.

Most numerical studies related to viscous dissipation are two-
dimensional. The effect of viscous dissipation in a 2D rectangular
cavity was investigated with an upwind finite difference scheme
along with successive over relaxation in [24]. An essentially 2D
finite element solution of a non-Newtonian fluid - polymer melts
convective flow in a tube with constant ambient temperature
was obtained in [25]. A 2D reciprocating forced convection was
simulated in [26] and a 2D thermal convection from uniformly
heated walls of a straight channel in presence of a rotationally
oscillating cylinder was modeled in [27]. A 2D steady laminar
boundary layer flow along a vertical stationary heated plate was
simulated using boundary layer equations in [28]. A 2D heat trans-
fer in lid-driven channels with fully developed axial flow for non-
Newtonian power-law fluids was studied with the commercial
finite element solver Fastflo in [29]. A 2D four-square cavity with
a uniform heat source and different temperature boundaries was
simulated with FLUENT in [8]. To study the heat and mass transfer
of MHD micropolar fluids, 2D governing equations were trans-
formed to a set of nonlinear ordinary differential equations with
similarity solutions which were then solved numerically by shoot-
ing technique in [30]. The viscous heating on forced convection
between an unconfined rotating cylinder and a fluid was simulated
in 2D settings [12]. An essentially 2D finite difference study was
performed on a forced convection in a MHD pump with Joule heat-
ing and viscous dissipation in [31]. A 2D finite volume study of wall
heating and cooling in a Herschel-Bulkley fluid flow in a circular
pipe with uniform wall temperature was conducted in [32]. The
2D governing equations of boundary layer flow and heat transfer
of a dusty fluid over an unsteady stretching surface were reduced
to nonlinear ordinary differential equations by similarity transfor-
mations and then numerically solved with Runge-Kutta-Fehlberg
method in [33]. A similar approach was in simulating 2D free
convection on a vertical plate in porous media with variable wall
temperature in [34].

There is a shortage of numerical study of convective heat trans-
fer using high ordermethods in both time and space in three dimen-
sional (3D) domains. This paper presents new formulation for
convective heat transfer by incorporating the complete 3D viscous
dissipation function [35] in the energy equation to account for vis-
cous heating and including the Boussinesq approximation for the
thermal buoyancy term in the Navier-Stokes equations. In addition,
new implementation of fourth order Stiffly Stable Schemes was
achieved and tested for time integration. The dual-level mesh
refinement, the hp-refinement for varied spatial resolution, was
accomplished by using a modal spectral element method [36–41]
which solves coupled momentum and energy equations in 3D.

The structure of this paper is outlined as below. Section 1
reviews the current state of research and existing work. Section 2
delineates details of the computational formulation and specific
implementations in this paper. Section 3 validates the new formu-

lation by comparing computational results with analytical solu-
tions and presents in-depth discussions. Section 4 describes the
application and validation with experimental data. Section 5 sum-
marizes and draws some conclusions.

2. Mathematical descriptions of simulations

2.1. Governing equations

In terms of the primitive variables, u; p; T , the velocity field
u ¼ ðu;v ;wÞT , pressure and temperature, the governing equations
consist of balances of the mass, momentum and energy. For an
incompressible fluid, the mass conservation equation is:

r � u ¼ 0: ð1Þ
For constant properties with up to medium temperature variations,
the momentum conservation is described with the incompressible
Navier-Stokes equations, in dimensionless units, which are given
in the Eulerian form:

@u
@t

þ u � ru ¼ �rpþ 1
Re

r �ruþ Gr

Re2
T z; ð2Þ

where Re and Gr are reference Reynolds number and Grashof num-
ber, respectively; T is the dimensionless excess temperature; and z
is the unit vector in the direction of the gravity. The last term in Eq.
(2) is the driving force for the natural convection.

In the absence of radiation and ignoring the pressure work, the
dimensionless energy conservation equation in terms of the
dimensionless excess temperature T is [42]:

@T
@t

þ u � rT ¼ 1
PrRe

r 2 T þ Ec
Re

Uþ
_QL

qCp T0u0
; ð3Þ

where Pr and Ec are the Prandtl number and Eckert number, respec-

tively; _Q is the volumetric internal heat source, L;q;Cp; T0; u0 are the
reference values for the length, density, specific heat at fixed
pressure, temperature, and velocity, respectively; and U is the
dimensionless viscous dissipation function as shown below:

U ¼ 2
@u
@x

� �2

þ @v
@y

� �2

þ @w
@z

� �2
" #

þ @u
@y

þ @v
@x

� �2

þ @v
@z

þ @w
@y

� �2

þ @w
@x

þ @u
@z

� �2

� 2
3

@u
@x

þ @v
@y

þ @w
@z

� �2

: ð4Þ

A closed system of five scalar equations in Eqs. (1)–(3) in terms of
five variables, u; v; w; p and T are to be solved numerically.

2.2. Computational algorithms and implementation

The continuity equation, Eq. (1), is a constraint for the auxiliary
variable - pressure in the momentum equations. Assume that four
principal variables u; v ; w, and T are discretized in space, by the
principle of the method of lines [43], the time derivatives are dis-
cretized with high order finite difference method, as in the below
discussions.

2.2.1. Temporal discretization
Although Adams-Bashforth and Adams-Moulton schemes could

be the first choice for the Navier-Stokes equations, to achieve the
third order accuracy, the stability condition severely limits the size
of time step. The Crank-Nicholson scheme could also be an option
for viscous integration. However, using a large time step, a
Crank-Nicholson scheme may suffer the short-wave instability
[44] and yield unrealistic solutions [45]. Another option is the gen-
eral h scheme which provides damping at all frequency for h ¼ 1:0
and certain stability [46]. Of course for h ¼ 0:5, it recovers the
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