International Journal of Heat and Mass Transfer 113 (2017) 741-754

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Interfacial forces used in two-phase flow numerical simulation

Tien-Juei Chuang^a, Takashi Hibiki^{b,*}

^a Department of Engineering and System Science, National Tsing-Hua University, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC ^b School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017, USA

ARTICLE INFO

Article history: Received 16 March 2017 Received in revised form 11 May 2017 Accepted 15 May 2017

Keywords: Interfacial force Interfacial transfer term Numerical simulation Interfacial area transport equation Bubble dynamics

ABSTRACT

High fidelity 3D computational simulation for gas-liquid two-phase flow is getting important to simulate various thermal-hydraulic phenomena in nuclear related components. Single-phase computational simulation techniques have reached to a certain level of reasonable prediction accuracy for the purposes of designs and performance analyses of industrial equipment. However, two-phase computational simulation techniques have not reached to the level of reliable prediction due mainly to the difficulty in the modeling of interfacial transfer terms. Accurate modeling of the interfacial forces including the interfacial area modeling is one of the keys to predict the distribution of gas phase in various two-phase flow systems successfully. This paper is aiming at reviewing the interfacial force modeling including recent advance of the interfacial area transport equation. This paper discusses the frame-work of bubble-wall collision force which is potentially used in place of the wall lubrication force applicable for laminar flow. This paper also discusses the frame-work of the bubble collision force considering the effect of the bubble coalescence on the bubble collision force and recent advance of the interfacial area transport equation force and recent advance of the interfacial area transport equation force and recent advance of the interfacial area transport equation offers the most advanced knowledge of constitutive equations necessary for improving the predictive capability of the two-phase flow computational simulation codes.

© 2017 Elsevier Ltd. All rights reserved.

Contents

1.	Introc	pduction
2.	Interf	rfacial force
	2.1.	Drag force
		2.1.1. Ishii-Zuber's model
		2.1.2. Tomiyama's model
	2.2.	Lift force
		2.2.1. Tomiyama's model
		2.2.2. Hibiki-Ishii's model
	2.3.	Wall lubrication (or wall repulsion) force
		2.3.1. Antal's model (1991)
		2.3.2. Tomiyama's model
		2.3.3. Hosokawa's model
		2.3.4. Frank's model (2008)
	2.4.	Bubble-wall collision force
		2.4.1. Chuang and Hibiki's model
	2.5.	Turbulent dispersion force 747
		2.5.1. Lopez de Bertodano's model
		2.5.2. Burns' model (or Favre average drag model)
	2.6.	Bubble collision force 747

Review

^{*} Corresponding author at: School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017, USA. *E-mail addresses:* s9811112@m98.nthu.edu.tw (T.-J. Chuang), hibiki@purdue.edu (T. Hibiki). URL: http://nthu.edu.tw (T.-J. Chuang).

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.05.062 0017-9310/© 2017 Elsevier Ltd. All rights reserved.

Nomenclature						
A _{base}	base area of group-2 bubble radius	σ	surface tension			
A_d	projection area of a bubble	η	volume generation rate per unit volume			
ai	interfacial area concentration	$\dot{\eta}_c$	collision efficiency			
B_{g}	bubble volume	ϕ	source term of interfacial are concentration			
C_W	coefficient	ρ	density			
D	hydraulic equivalent diameter of flow channel	$\Delta \rho$	density difference			
D_b	bubble diameter	v	kinematic viscosity			
Ео	Eötvös number	v_t	kinematic turbulent viscosity			
F	interfacial force	v_t^{BI}	bubble induced kinematic turbulent viscosity			
Gs	dimensionless velocity gradient	μ	dynamic viscosity			
g	gravitational acceleration	Σ	macroscopic bubble collision cross section			
H_{gf}	curvature of gas phase	$\bar{oldsymbol{ au}}$	shear stress			
ĸ	turbulent kinetic energy	ξ	modification factor due to bubble deformation			
L _{wet}	perimeter					
М	interfacial momentum transfer term		pts			
n _b	number density	1	group-1			
n _W	normal unit vector of wall	2	group-2			
n _z	unit vector along flow direction	f	liquid phase			
р	pressure	g	gas phase			
Р	variable of exponential law	i	value at interface			
Р	momentum	i	<i>i-th</i> interface			
$Pr_{\alpha f}$	Prandtl number for volume fraction	ph	phase change			
Re	Reynolds number	k	k-phase (gas or liquid)			
r _d	bubble radius	q	bubble group q (group 1 or group 2)			
S	source or sink term of bubble number per unit volume	Ŵ	wall			
St	Stokes number	∞	single-bubble system			
t	time					
V	volume	Superscripts				
v	velocity	BC	hubble collision force			
\boldsymbol{v}_r	relative velocity	BF	Basset force			
\boldsymbol{v}_t	turbulence velocity	BW	hubble/Wall collision force			
y_w	distance between bubble and wall	D	drag force			
		IP	interfacial pressure force			
Greek sy	mbol	IS	interfacial shear force			
α	void fraction	LF	lift force			
α_{max}	maximum allowable void fraction	VM	virtual mass force			
Δm_{12}	inter-group mass transfer term	SL	shear induced lift force			
Γ	interfacial mass transfer term	TD	turbulent dispersion force			
3	turbulence dispersion rate	WL	wall lubrication force			
χ	coefficient of inter-group transfer					

		2.6.1. Alajbegovic's model	747
		2.6.1. Sharma's model	747
		2.6.3. Chuang and Hibiki's model	747
	2.7.	Interfacial pressure force	748
	2.8.	Interfacial shear force	748
	2.9.	Virtual mass force	748
	2.10.	Basset force	748
3.	Recen	It advance of interfacial area transport equation	748
	3.1.	Corrected inter-group mass transfer	749
	3.2.	Dependence of κ_q coefficient on bubble geometry	749
		3.2.1. κ_2 coefficient for cap bubbles in concentric annulus	749
		3.2.2. κ_1 coefficient for spherical-edged pancake bubbles in narrow rectangular channel	749
		3.2.3. κ_2 coefficient for cap bubbles in rod bundle	749
	3.3.	Turbulence diffusion term derived from interfacial area transport equation	749
4.	Recen	It advance to reveal effect of interfacial forces on 3D CFD computation	749
	4.1.	Effect of bubble collision force on 3D CFD computation	750
	4.2.	Effect of interfacial shear force on 3D CFD computation	750
5.	Conclu	usions	750
	Apper	ndix A. Derivation of bubble-wall collision force	751
	A.1.	Formulation of flux of bubbles bounding back from wall surface	751
	A.2.	Formulation of momentum carried by bubbles bounding back from wall surface	751
	A.3.	Formulation of bubble-wall collision force	751

Download English Version:

https://daneshyari.com/en/article/4994150

Download Persian Version:

https://daneshyari.com/article/4994150

Daneshyari.com